

Whoosh 2.7.4 documentation

Whoosh was created by Matt Chaput.
You can view outstanding issues on the
Whoosh Bitbucket page [http://bitbucket.org/mchaput/whoosh]
and get help on the Whoosh mailing list [http://groups.google.com/group/whoosh].

Contents

	Release notes
	Whoosh 2.x release notes

	Whoosh 1.x release notes

	Whoosh 0.3 release notes

	Quick start
	A quick introduction

	The Index and Schema objects

	The IndexWriter object

	The Searcher object

	Introduction to Whoosh
	About Whoosh

	What is Whoosh?

	What can Whoosh do for you?

	Getting help with Whoosh

	Glossary

	Designing a schema
	About schemas and fields

	Built-in field types

	Creating a Schema

	Modifying the schema after indexing

	Dynamic fields

	Advanced schema setup

	How to index documents
	Creating an Index object

	Clearing the index

	Indexing documents

	Merging segments

	Deleting documents

	Updating documents

	Incremental indexing

	Clearing the index

	How to search
	The Searcher object

	Results object

	Scoring and sorting

	Highlighting snippets and More Like This

	Filtering results

	Which terms from my query matched?

	Collapsing results

	Time limited searches

	Convenience methods

	Combining Results objects

	Parsing user queries
	Overview

	Using the default parser

	Common customizations

	Advanced customization

	The default query language
	Overview

	Individual terms and phrases

	Boolean operators

	Fields

	Inexact terms

	Ranges

	Boosting query elements

	Making a term from literal text

	Indexing and parsing dates/times
	Indexing dates

	Parsing date queries

	About time zones and basetime

	Date parser notes

	Limitations

	Query objects

	About analyzers
	Overview

	Using analyzers

	Advanced Analysis

	Stemming, variations, and accent folding
	The problem

	Stemming

	Variations

	Lemmatization

	Character folding

	Indexing and searching N-grams
	Overview

	Sorting and faceting
	Overview

	Sorting

	Grouping

	Facet types

	MultiFacet

	Missing values

	Using overlapping groups

	Using a custom sort order

	Expert: writing your own facet

	How to create highlighted search result excerpts
	Overview

	Requirements

	How to

	The character limit

	Customizing the highlights

	Highlighter object

	Speeding up highlighting

	Using the low-level API

	Query expansion and Key word extraction
	Overview

	Usage

	Expansion models

	“Did you mean... ?” Correcting errors in user queries
	Overview

	Pulling suggestions from an indexed field

	Pulling suggestions from a word list

	Merging two or more correctors

	Correcting user queries

	Field caches
	Customizing cache behaviour

	Creating a custom caching policy

	Tips for speeding up batch indexing
	Overview

	StemmingAnalyzer cache

	The limitmb parameter

	The procs parameter

	The multisegment parameter

	Concurrency, locking, and versioning
	Concurrency

	Locking

	Versioning

	Indexing and searching document hierarchies
	Overview

	Using nested document indexing

	Using query-time joins

	Whoosh recipes
	General

	Analysis

	Searching

	Shortcuts

	Sorting and scoring

	Results

	Global information

	Whoosh API
	analysis module

	codec.base module

	collectors module

	columns module

	fields module

	filedb.filestore module

	filedb.filetables module

	filedb.structfile module

	formats module

	highlight module

	support.bitvector module

	index module

	lang.morph_en module

	lang.porter module

	lang.wordnet module

	matching module

	qparser module

	query module

	reading module

	scoring module

	searching module

	sorting module

	spelling module

	support.charset module

	support.levenshtein module

	util module

	writing module

	Technical notes
	How to implement a new backend

	filedb notes

Indices and tables

	Index

	Module Index

	Search Page

Release notes

	Whoosh 2.x release notes
	Whoosh 2.7

	Whoosh 2.5

	Whoosh 2.4

	Whoosh 2.3.2

	Whoosh 2.3.1

	Whoosh 2.3

	Whoosh 2.2

	Whoosh 2.1

	Whoosh 2.0

	Whoosh 1.x release notes
	Whoosh 1.8.3

	Whoosh 1.8.2

	Whoosh 1.8.1

	Whoosh 1.8

	Whoosh 1.7.7

	Whoosh 1.7

	Whoosh 1.6

	Whoosh 1.5

	Whoosh 1.3

	Whoosh 1.2

	Whoosh 1.0

	User API changes

	Misc

	Whoosh 0.3 release notes

Whoosh 2.x release notes

Whoosh 2.7

	Removed on-disk word graph implementation of spell checking in favor of much
simpler and faster FSA implementation over the term file.

	Many bug fixes.

	Removed backwards compatibility with indexes created by versions prior to
2.5. You may need to re-index if you are using an old index that hasn’t been
updated.

	This is the last 2.x release before a major overhaul that will break backwards
compatibility.

Whoosh 2.5

	Whoosh 2.5 will read existing indexes, but segments created by 2.5 will not
be readable by older versions of Whoosh.

	As a replacement for field caches to speed up sorting, Whoosh now supports
adding a sortable=True keyword argument to fields. This makes Whoosh store
a sortable representation of the field’s values in a “column” format
(which associates a “key” value with each document). This is more robust,
efficient, and customizable than the old behavior.
You should now specify sortable=True on fields that you plan on using to
sort or group search results.

(You can still sort/group on fields that don’t have sortable=True,
however it will use more RAM and be slower as Whoosh caches the field values
in memory.)

Fields that use sortable=True can avoid specifying stored=True. The
field’s value will still be available on Hit objects (the value will be
retrieved from the column instead of from the stored fields). This may
actually be faster for certain types of values.

	Whoosh will now detect common types of OR queries and use optimized read-ahead
matchers to speed them up by several times.

	Whoosh now includes pure-Python implementations of the Snowball stemmers and
stop word lists for various languages adapted from NLTK. These are available
through the whoosh.analysis.LanguageAnalyzer analyzer or through the
lang= keyword argument to the
TEXT field.

	You can now use the
whoosh.filedb.filestore.Storage.create() and
whoosh.filedb.filestore.Storage.destory()
methods as a consistent API to set up and tear down different types of
storage.

	Many bug fixes and speed improvements.

	Switched unit tests to use py.test instead of nose.

	Removed obsolete SpellChecker class.

Whoosh 2.4

	By default, Whoosh now assembles the individual files of a segment into a
single file when committing. This has a small performance penalty but solves
a problem where Whoosh can keep too many files open. Whoosh is also now
smarter about using mmap.

	Added functionality to index and search hierarchical documents. See
Indexing and searching document hierarchies.

	Rewrote the Directed Acyclic Word Graph implementation (used in spell
checking) to be faster and more space-efficient. Word graph files created by
previous versions will be ignored, meaning that spell checking may become
slower unless/until you replace the old segments (for example, by
optimizing).

	Rewrote multiprocessing indexing to be faster and simpler. You can now
do myindex.writer(procs=n) to get a multiprocessing writer, or
myindex.writer(procs=n, multisegment=True) to get a multiprocessing
writer that leaves behind multiple segments, like the old MultiSegmentWriter.
(MultiSegmentWriter is still available as a function that returns the
new class.)

	When creating Term query objects for special fields (e.g. NUMERIC or
BOOLEAN), you can now use the field’s literal type instead of a string as the
second argument, for example Term("num", 20) or Term("bool", True).
(This change may cause problems interacting with functions that expect
query objects to be pure textual, such as spell checking.)

	All writing to and reading from on-disk indexes is now done through “codec”
objects. This architecture should make it easier to add optional or
experimental features, and maintain backwards compatibility.

	Fixes issues #75, #137, #206, #213, #215, #219, #223, #226, #230, #233, #238,
#239, #240, #241, #243, #244, #245, #252, #253, and other bugs. Thanks to
Thomas Waldmann and Alexei Gousev for the help!

Whoosh 2.3.2

	Fixes bug in BM25F scoring function, leading to increased precision in search
results.

	Fixes issues #203, #205, #206, #208, #209, #212.

Whoosh 2.3.1

	Fixes issue #200.

Whoosh 2.3

	Added a whoosh.query.Regex term query type, similar to
whoosh.query.Wildcard. The parser does not allow regex term queries
by default. You need to add the whoosh.qparser.RegexPlugin plugin.
After you add the plugin, you can use r"expression" query syntax for
regular expression term queries. For example, r"foo.*bar".

	Added the whoosh.qparser.PseudoFieldPlugin parser plugin. This
plugin lets you create “pseudo-fields” that run a transform function on
whatever query syntax the user applies the field to. This is fairly advanced
functionality right now; I’m trying to think of ways to make its power easier
to access.

	The documents in the lists in the dictionary returned by Results.groups()
by default are now in the same relative order as in the results. This makes
it much easier to display the “top N” results in each category, for example.

	The groupids keyword argument to Searcher.search has been removed.
Instead you can now pass a whoosh.sorting.FacetMap object to the
Searcher.search method’s maptype argument to control how faceted
documents are grouped, and/or set the maptype argument on individual
whoosh.sorting.FacetType` objects to set custom grouping per facet.
See Sorting and faceting for more information.

	Calling Searcher.documents() or Searcher.document_numbers() with no
arguments now yields all documents/numbers.

	Calling Writer.update_document() with no unique fields is now equivalent
to calling Writer.add_document() with the same arguments.

	Fixed a problem with keyword expansion where the code was building a cache
that was fast on small indexes, but unacceptably slow on large indexes.

	Added the hyphen (-) to the list of characters that match a “wildcard”
token, to make parsing slightly more predictable. A true fix will have to
wait for another parser rewrite.

	Fixed an unused __future__ import and use of float("nan") which were
breaking under Python 2.5.

	Fixed a bug where vectored fields with only one term stored an empty term
vector.

	Various other bug fixes.

Whoosh 2.2

	Fixes several bugs, including a bad bug in BM25F scoring.

	Added allow_overlap option to whoosh.sorting.StoredFieldFacet.

	In add_document(), You can now pass
query-like strings for BOOLEAN and DATETIME fields (e.g boolfield="true"
and dtfield="20101131-16:01") as an alternative to actual bool or
datetime objects. The implementation of this is incomplete: it only works
in the default filedb backend, and if the field is stored, the stored
value will be the string, not the parsed object.

	Added whoosh.analysis.CompoundWordFilter and
whoosh.analysis.TeeFilter.

Whoosh 2.1

This release fixes several bugs, and contains speed improvments to highlighting.
See How to create highlighted search result excerpts for more information.

Whoosh 2.0

Improvements

	Whoosh is now compatible with Python 3 (tested with Python 3.2). Special
thanks to Vinay Sajip who did the work, and also Jordan Sherer who helped
fix later issues.

	Sorting and grouping (faceting) now use a new system of “facet” objects which
are much more flexible than the previous field-based system.

For example, to sort by first name and then score:

from whoosh import sorting

mf = sorting.MultiFacet([sorting.FieldFacet("firstname"),
 sorting.ScoreFacet()])
results = searcher.search(myquery, sortedby=mf)

In addition to the previously supported sorting/grouping by field contents
and/or query results, you can now use numeric ranges, date ranges, score, and
more. The new faceting system also supports overlapping groups.

(The old “Sorter” API still works but is deprecated and may be removed in a
future version.)

See Sorting and faceting for more information.

	Completely revamped spell-checking to make it much faster, easier, and more
flexible. You can enable generation of the graph files use by spell checking
using the spelling=True argument to a field type:

schema = fields.Schema(text=fields.TEXT(spelling=True))

(Spelling suggestion methods will work on fields without spelling=True
but will slower.) The spelling graph will be updated automatically as new
documents are added – it is no longer necessary to maintain a separate
“spelling index”.

You can get suggestions for individual words using
whoosh.searching.Searcher.suggest():

suglist = searcher.suggest("content", "werd", limit=3)

Whoosh now includes convenience methods to spell-check and correct user
queries, with optional highlighting of corrections using the
whoosh.highlight module:

from whoosh import highlight, qparser

User query string
qstring = request.get("q")

Parse into query object
parser = qparser.QueryParser("content", myindex.schema)
qobject = parser.parse(qstring)

results = searcher.search(qobject)

if not results:
 correction = searcher.correct_query(gobject, gstring)
 # correction.query = corrected query object
 # correction.string = corrected query string

 # Format the corrected query string with HTML highlighting
 cstring = correction.format_string(highlight.HtmlFormatter())

Spelling suggestions can come from field contents and/or lists of words.
For stemmed fields the spelling suggestions automatically use the unstemmed
forms of the words.

There are APIs for spelling suggestions and query correction, so highly
motivated users could conceivably replace the defaults with more
sophisticated behaviors (for example, to take context into account).

See “Did you mean... ?” Correcting errors in user queries for more information.

	whoosh.query.FuzzyTerm now uses the new word graph feature as well
and so is much faster.

	You can now set a boost factor for individual documents as you index them,
to increase the score of terms in those documents in searches. See the
documentation for the add_document() for
more information.

	Added built-in recording of which terms matched in which documents. Use the
terms=True argument to whoosh.searching.Searcher.search() and use
whoosh.searching.Hit.matched_terms() and
whoosh.searching.Hit.contains_term() to check matched terms.

	Whoosh now supports whole-term quality optimizations, so for example if the
system knows that a UnionMatcher cannot possibly contribute to the “top N”
results unless both sub-matchers match, it will replace the UnionMatcher with
an IntersectionMatcher which is faster to compute. The performance improvement
is not as dramatic as from block quality optimizations, but it can be
noticeable.

	Fixed a bug that prevented block quality optimizations in queries with words
not in the index, which could severely degrade performance.

	Block quality optimizations now use the actual scoring algorithm to calculate
block quality instead of an approximation, which fixes issues where ordering
of results could be different for searches with and without the optimizations.

	the BOOLEAN field type now supports field boosts.

	Re-architected the query parser to make the code easier to understand. Custom
parser plugins from previous versions will probably break in Whoosh 2.0.

	Various bug-fixes and performance improvements.

	Removed the “read lock”, which caused more problems than it solved. Now when
opening a reader, if segments are deleted out from under the reader as it
is opened, the code simply retries.

Compatibility

	The term quality optimizations required changes to the on-disk formats.
Whoosh 2.0 if backwards-compatible with the old format. As you rewrite an
index using Whoosh 2.0, by default it will use the new formats for new
segments, making the index incompatible with older versions.

To upgrade an existing index to use the new formats immediately, use
Index.optimize().

	Removed the experimental TermTrackingCollector since it is replaced by
the new built-in term recording functionality.

	Removed the experimental Searcher.define_facets feature until a future
release when it will be replaced by a more robust and useful feature.

	Reader iteration methods (__iter__, iter_from, iter_field, etc.)
now yield whoosh.reading.TermInfo objects.

	The arguments to whoosh.query.FuzzyTerm changed.

Whoosh 1.x release notes

Whoosh 1.8.3

Whoosh 1.8.3 contains important bugfixes and new functionality. Thanks to all
the mailing list and BitBucket users who helped with the fixes!

Fixed a bad Collector bug where the docset of a Results object did not match
the actual results.

You can now pass a sequence of objects to a keyword argument in add_document
and update_document (currently this will not work for unique fields in
update_document). This is useful for non-text fields such as DATETIME
and NUMERIC, allowing you to index multiple dates/numbers for a document:

writer.add_document(shoe=u"Saucony Kinvara", sizes=[10.0, 9.5, 12])

This version reverts to using the CDB hash function for hash files instead of
Python’s hash() because the latter is not meant to be stored externally.
This change maintains backwards compatibility with old files.

The Searcher.search method now takes a mask keyword argument. This is
the opposite of the filter argument. Where the filter specifies the
set of documents that can appear in the results, the mask specifies a
set of documents that must not appear in the results.

Fixed performance problems in Searcher.more_like. This method now also
takes a filter keyword argument like Searcher.search.

Improved documentation.

Whoosh 1.8.2

Whoosh 1.8.2 fixes some bugs, including a mistyped signature in
Searcher.more_like and a bad bug in Collector that could screw up the
ordering of results given certain parameters.

Whoosh 1.8.1

Whoosh 1.8.1 includes a few recent bugfixes/improvements:

	ListMatcher.skip_to_quality() wasn’t returning an integer, resulting
in a “None + int” error.

	Fixed locking and memcache sync bugs in the Google App Engine storage
object.

	MultifieldPlugin wasn’t working correctly with groups.
	The binary matcher trees of Or and And are now generated using a
Huffman-like algorithm instead perfectly balanced. This gives a
noticeable speed improvement because less information has to be passed
up/down the tree.

Whoosh 1.8

This release relicensed the Whoosh source code under the Simplified BSD (A.K.A.
“two-clause” or “FreeBSD”) license. See LICENSE.txt for more information.

Whoosh 1.7.7

Setting a TEXT field to store term vectors is now much easier. Instead of
having to pass an instantiated whoosh.formats.Format object to the vector=
keyword argument, you can pass True to automatically use the same format and
analyzer as the inverted index. Alternatively, you can pass a Format subclass
and Whoosh will instantiate it for you.

For example, to store term vectors using the same settings as the inverted
index (Positions format and StandardAnalyzer):

from whoosh.fields import Schema, TEXT

schema = Schema(content=TEXT(vector=True))

To store term vectors that use the same analyzer as the inverted index
(StandardAnalyzer by default) but only store term frequency:

from whoosh.formats import Frequency

schema = Schema(content=TEXT(vector=Frequency))

Note that currently the only place term vectors are used in Whoosh is keyword
extraction/more like this, but they can be useful for expert users with custom
code.

Added whoosh.searching.Searcher.more_like() and
whoosh.searching.Hit.more_like_this() methods, as shortcuts for doing
keyword extraction yourself. Return a Results object.

“python setup.py test” works again, as long as you have nose installed.

The whoosh.searching.Searcher.sort_query_using() method lets you sort documents matching a given query using an arbitrary function. Note that like “complex” searching with the Sorter object, this can be slow on large multi-segment indexes.

Whoosh 1.7

You can once again perform complex sorting of search results (that is, a sort
with some fields ascending and some fields descending).

You can still use the sortedby keyword argument to
whoosh.searching.Searcher.search() to do a simple sort (where all fields
are sorted in the same direction), or you can use the new
Sorter class to do a simple or complex sort:

searcher = myindex.searcher()
sorter = searcher.sorter()
Sort first by the group field, ascending
sorter.add_field("group")
Then by the price field, descending
sorter.add_field("price", reverse=True)
Get the Results
results = sorter.sort_query(myquery)

See the documentation for the Sorter class for more
information. Bear in mind that complex sorts will be much slower on large
indexes because they can’t use the per-segment field caches.

You can now get highlighted snippets for a hit automatically using
whoosh.searching.Hit.highlights():

results = searcher.search(myquery, limit=20)
for hit in results:
 print hit["title"]
 print hit.highlights("content")

See whoosh.searching.Hit.highlights() for more information.

Added the ability to filter search results so that only hits in a Results
set, a set of docnums, or matching a query are returned. The filter is
cached on the searcher.

Search within previous results
newresults = searcher.search(newquery, filter=oldresults)

Search within the “basics” chapter
results = searcher.search(userquery, filter=query.Term(“chapter”, “basics”))

You can now specify a time limit for a search. If the search does not finish
in the given time, a whoosh.searching.TimeLimit exception is raised,
but you can still retrieve the partial results from the collector. See the
timelimit and greedy arguments in the
whoosh.searching.Collector documentation.

Added back the ability to set whoosh.analysis.StemFilter to use an
unlimited cache. This is useful for one-shot batch indexing (see
Tips for speeding up batch indexing).

The normalize() method of the And and Or queries now merges
overlapping range queries for more efficient queries.

Query objects now have __hash__ methods allowing them to be used as
dictionary keys.

The API of the highlight module has changed slightly. Most of the functions
in the module have been converted to classes. However, most old code should
still work. The NullFragmeter is now called WholeFragmenter, but the
old name is still available as an alias.

Fixed MultiPool so it won’t fill up the temp directory with job files.

Fixed a bug where Phrase query objects did not use their boost factor.

Fixed a bug where a fieldname after an open parenthesis wasn’t parsed
correctly. The change alters the semantics of certain parsing “corner cases”
(such as a:b:c:d).

Whoosh 1.6

The whoosh.writing.BatchWriter class is now called
whoosh.writing.BufferedWriter. It is similar to the old BatchWriter
class but allows you to search and update the buffered documents as well as the
documents that have been flushed to disk:

writer = writing.BufferedWriter(myindex)

You can update (replace) documents in RAM without having to commit them
to disk
writer.add_document(path="/a", text="Hi there")
writer.update_document(path="/a", text="Hello there")

Search committed and uncommited documents by getting a searcher from the
writer instead of the index
searcher = writer.searcher()

(BatchWriter is still available as an alias for backwards compatibility.)

The whoosh.qparser.QueryParser initialization method now requires a
schema as the second argument. Previously the default was to create a
QueryParser without a schema, which was confusing:

qp = qparser.QueryParser("content", myindex.schema)

The whoosh.searching.Searcher.search() method now takes a scored
keyword. If you search with scored=False, the results will be in “natural”
order (the order the documents were added to the index). This is useful when
you don’t need scored results but want the convenience of the Results object.

Added the whoosh.qparser.GtLtPlugin parser plugin to allow greater
than/less as an alternative syntax for ranges:

count:>100 tag:<=zebra date:>='29 march 2001'

Added the ability to define schemas declaratively, similar to Django models:

from whoosh import index
from whoosh.fields import SchemaClass, ID, KEYWORD, STORED, TEXT

class MySchema(SchemaClass):
 uuid = ID(stored=True, unique=True)
 path = STORED
 tags = KEYWORD(stored=True)
 content = TEXT

index.create_in("indexdir", MySchema)

Whoosh 1.6.2: Added whoosh.searching.TermTrackingCollector which tracks
which part of the query matched which documents in the final results.

Replaced the unbounded cache in whoosh.analysis.StemFilter with a
bounded LRU (least recently used) cache. This will make stemming analysis
slightly slower but prevent it from eating up too much memory over time.

Added a simple whoosh.analysis.PyStemmerFilter that works when the
py-stemmer library is installed:

ana = RegexTokenizer() | PyStemmerFilter("spanish")

The estimation of memory usage for the limitmb keyword argument to
FileIndex.writer() is more accurate, which should help keep memory usage
memory usage by the sorting pool closer to the limit.

The whoosh.ramdb package was removed and replaced with a single
whoosh.ramindex module.

Miscellaneous bug fixes.

Whoosh 1.5

Note

Whoosh 1.5 is incompatible with previous indexes. You must recreate
existing indexes with Whoosh 1.5.

Fixed a bug where postings were not portable across different endian platforms.

New generalized field cache system, using per-reader caches, for much faster
sorting and faceting of search results, as well as much faster multi-term (e.g.
prefix and wildcard) and range queries, especially for large indexes and/or
indexes with multiple segments.

Changed the faceting API. See Sorting and faceting.

Faster storage and retrieval of posting values.

Added per-field multitoken_query attribute to control how the query parser
deals with a “term” that when analyzed generates multiple tokens. The default
value is “first” which throws away all but the first token (the previous
behavior). Other possible values are “and”, “or”, or “phrase”.

Added whoosh.analysis.DoubleMetaphoneFilter,
whoosh.analysis.SubstitutionFilter, and
whoosh.analysis.ShingleFilter.

Added whoosh.qparser.CopyFieldPlugin.

Added whoosh.query.Otherwise.

Generalized parsing of operators (such as OR, AND, NOT, etc.) in the query
parser to make it easier to add new operators. In intend to add a better API
for this in a future release.

Switched NUMERIC and DATETIME fields to use more compact on-disk
representations of numbers.

Fixed a bug in the porter2 stemmer when stemming the string “y”.

Added methods to whoosh.searching.Hit to make it more like a dict.

Short posting lists (by default, single postings) are inline in the term file
instead of written to the posting file for faster retrieval and a small saving
in disk space.

Whoosh 1.3

Whoosh 1.3 adds a more efficient DATETIME field based on the new tiered NUMERIC
field, and the DateParserPlugin. See Indexing and parsing dates/times.

Whoosh 1.2

Whoosh 1.2 adds tiered indexing for NUMERIC fields, resulting in much faster
range queries on numeric fields.

Whoosh 1.0

Whoosh 1.0 is a major milestone release with vastly improved performance and
several useful new features.

The index format of this version is not compatibile with indexes created by
previous versions of Whoosh. You will need to reindex your data to use this
version.

Orders of magnitude faster searches for common terms. Whoosh now uses
optimizations similar to those in Xapian to skip reading low-scoring postings.

Faster indexing and ability to use multiple processors (via multiprocessing
module) to speed up indexing.

Flexible Schema: you can now add and remove fields in an index with the
whoosh.writing.IndexWriter.add_field() and
whoosh.writing.IndexWriter.remove_field() methods.

New hand-written query parser based on plug-ins. Less brittle, more robust,
more flexible, and easier to fix/improve than the old pyparsing-based parser.

On-disk formats now use 64-bit disk pointers allowing files larger than 4 GB.

New whoosh.searching.Facets class efficiently sorts results into
facets based on any criteria that can be expressed as queries, for example
tags or price ranges.

New whoosh.writing.BatchWriter class automatically batches up
individual add_document and/or delete_document calls until a certain
number of calls or a certain amount of time passes, then commits them all at
once.

New whoosh.analysis.BiWordFilter lets you create bi-word indexed
fields a possible alternative to phrase searching.

Fixed bug where files could be deleted before a reader could open them in
threaded situations.

New whoosh.analysis.NgramFilter filter,
whoosh.analysis.NgramWordAnalyzer analyzer, and
whoosh.fields.NGRAMWORDS field type allow producing n-grams from
tokenized text.

Errors in query parsing now raise a specific whoosh.qparse.QueryParserError
exception instead of a generic exception.

Previously, the query string * was optimized to a
whoosh.query.Every query which matched every document. Now the
Every query only matches documents that actually have an indexed term from
the given field, to better match the intuitive sense of what a query string like
tag:* should do.

New whoosh.searching.Searcher.key_terms_from_text() method lets you
extract key words from arbitrary text instead of documents in the index.

Previously the whoosh.searching.Searcher.key_terms() and
whoosh.searching.Results.key_terms() methods required that the given
field store term vectors. They now also work if the given field is stored
instead. They will analyze the stored string into a term vector on-the-fly.
The field must still be indexed.

User API changes

The default for the limit keyword argument to
whoosh.searching.Searcher.search() is now 10. To return all results
in a single Results object, use limit=None.

The Index object no longer represents a snapshot of the index at the time
the object was instantiated. Instead it always represents the index in the
abstract. Searcher and IndexReader objects obtained from the
Index object still represent the index as it was at the time they were
created.

Because the Index object no longer represents the index at a specific
version, several methods such as up_to_date and refresh were removed
from its interface. The Searcher object now has
last_modified(),
up_to_date(), and
refresh() methods similar to those that used to
be on Index.

The document deletion and field add/remove methods on the Index object now
create a writer behind the scenes to accomplish each call. This means they write
to the index immediately, so you don’t need to call commit on the Index.
Also, it will be much faster if you need to call them multiple times to create
your own writer instead:

Don't do this
for id in my_list_of_ids_to_delete:
 myindex.delete_by_term("id", id)
myindex.commit()

Instead do this
writer = myindex.writer()
for id in my_list_of_ids_to_delete:
 writer.delete_by_term("id", id)
writer.commit()

The postlimit argument to Index.writer() has been changed to
postlimitmb and is now expressed in megabytes instead of bytes:

writer = myindex.writer(postlimitmb=128)

Instead of having to import whoosh.filedb.filewriting.NO_MERGE or
whoosh.filedb.filewriting.OPTIMIZE to use as arguments to commit(), you
can now simply do the following:

Do not merge segments
writer.commit(merge=False)

or

Merge all segments
writer.commit(optimize=True)

The whoosh.postings module is gone. The whoosh.matching module contains
classes for posting list readers.

Whoosh no longer maps field names to numbers for internal use or writing to
disk. Any low-level method that accepted field numbers now accept field names
instead.

Custom Weighting implementations that use the final() method must now
set the use_final attribute to True:

from whoosh.scoring import BM25F

class MyWeighting(BM25F):
 use_final = True

 def final(searcher, docnum, score):
 return score + docnum * 10

This disables the new optimizations, forcing Whoosh to score every matching
document.

whoosh.writing.AsyncWriter now takes an whoosh.index.Index
object as its first argument, not a callable. Also, the keyword arguments to
pass to the index’s writer() method should now be passed as a dictionary
using the writerargs keyword argument.

Whoosh now stores per-document field length using an approximation rather than
exactly. For low numbers the approximation is perfectly accurate, while high
numbers will be approximated less accurately.

The doc_field_length method on searchers and readers now takes a second
argument representing the default to return if the given document and field
do not have a length (i.e. the field is not scored or the field was not
provided for the given document).

The whoosh.analysis.StopFilter now has a maxsize argument as well
as a minsize argument to its initializer. Analyzers that use the
StopFilter have the maxsize argument in their initializers now also.

The interface of whoosh.writing.AsyncWriter has changed.

Misc

	Because the file backend now writes 64-bit disk pointers and field names
instead of numbers, the size of an index on disk will grow compared to
previous versions.

	Unit tests should no longer leave directories and files behind.

Whoosh 0.3 release notes

	Major improvements to reading/writing of postings and query performance.

	Changed default post limit (run size) from 4 MB to 32 MB.

	Finished migrating backend-specific code into whoosh.filedb package.

	Moved formats from whoosh.fields module into new whoosh.formats module.

	DocReader and TermReader classes combined into new IndexReader interface.
You can get an IndexReader implementation by calling Index.reader().
Searcher is now a wrapper around an IndexReader.

	Range query object changed, with new signature and new syntax in the default
query parser. Now you can use [start TO end] in the query parser for an
inclusive range, and {start TO end} for an exclusive range. You can also
mix the delimiters, for example [start TO end} for a range with an
inclusive start but exclusive end term.

	Added experimental DATETIME field type lets you pass a
datetime.datetime object as a field value to add_document:

from whoosh.fields import Schema, ID, DATETIME
from whoosh.filedb.filestore import RamStorage
from datetime import datetime

schema = Schema(id=ID, date=DATETIME)
storage = RamStorage()
ix = storage.create_index(schema)
w = ix.writer()
w.add_document(id=u"A", date=datetime.now())
w.close()

Internally, the DATETIME field indexes the datetime object as text using
the format (4 digit year + 2 digit month + 2 digit day + ‘T’ + 2 digit hour +
2 digit minute + 2 digit second + 6 digit microsecond), for example
20090817T160203109000.

	The default query parser now lets you use quoted strings in prefix and range
queries, e.g. ["2009-05" TO "2009-12"], "alfa/bravo"*, making it
easier to work with terms containing special characters.

	DocReader.vector_as(docnum, fieldid, astype) is now
IndexReader.vector_as(astype, docnum, fieldid) (i.e. the astype argument
has moved from the last to the first argument), e.g.
v = ixreader.vector_as("frequency", 102, "content").

	Added whoosh.support.charset for translating Sphinx charset table files.

	Added whoosh.analysis.CharsetTokenizer and CharsetFilter to enable case and
accent folding.

	Added experimental whoosh.ramdb in-memory backend.

	Added experimental whoosh.query.FuzzyTerm query type.

	Added whoosh.lang.wordnet module containing Thesaurus object for using
WordNet synonym database.

Quick start

Whoosh is a library of classes and functions for indexing text and then searching the index.
It allows you to develop custom search engines for your content. For example, if you were
creating blogging software, you could use Whoosh to add a search function to allow users to
search blog entries.

A quick introduction

>>> from whoosh.index import create_in
>>> from whoosh.fields import *
>>> schema = Schema(title=TEXT(stored=True), path=ID(stored=True), content=TEXT)
>>> ix = create_in("indexdir", schema)
>>> writer = ix.writer()
>>> writer.add_document(title=u"First document", path=u"/a",
... content=u"This is the first document we've added!")
>>> writer.add_document(title=u"Second document", path=u"/b",
... content=u"The second one is even more interesting!")
>>> writer.commit()
>>> from whoosh.qparser import QueryParser
>>> with ix.searcher() as searcher:
... query = QueryParser("content", ix.schema).parse("first")
... results = searcher.search(query)
... results[0]
...
{"title": u"First document", "path": u"/a"}

The Index and Schema objects

To begin using Whoosh, you need an index object. The first time you create
an index, you must define the index’s schema. The schema lists the fields
in the index. A field is a piece of information for each document in the index,
such as its title or text content. A field can be indexed (meaning it can
be searched) and/or stored (meaning the value that gets indexed is returned
with the results; this is useful for fields such as the title).

This schema has two fields, “title” and “content”:

from whoosh.fields import Schema, TEXT

schema = Schema(title=TEXT, content=TEXT)

You only need to do create the schema once, when you create the index. The
schema is pickled and stored with the index.

When you create the Schema object, you use keyword arguments to map field names
to field types. The list of fields and their types defines what you are indexing
and what’s searchable. Whoosh comes with some very useful predefined field
types, and you can easily create your own.

	whoosh.fields.ID

	This type simply indexes (and optionally stores) the entire value of the
field as a single unit (that is, it doesn’t break it up into individual
words). This is useful for fields such as a file path, URL, date, category,
etc.

	whoosh.fields.STORED

	This field is stored with the document, but not indexed. This field type is
not indexed and not searchable. This is useful for document information you
want to display to the user in the search results.

	whoosh.fields.KEYWORD

	This type is designed for space- or comma-separated keywords. This type is
indexed and searchable (and optionally stored). To save space, it does not
support phrase searching.

	whoosh.fields.TEXT

	This type is for body text. It indexes (and optionally stores) the text and
stores term positions to allow phrase searching.

	whoosh.fields.NUMERIC

	This type is for numbers. You can store integers or floating point numbers.

	whoosh.fields.BOOLEAN

	This type is for boolean (true/false) values.

	whoosh.fields.DATETIME

	This type is for datetime objects. See Indexing and parsing dates/times for more
information.

	whoosh.fields.NGRAM and whoosh.fields.NGRAMWORDS

	These types break the field text or individual terms into N-grams.
See Indexing and searching N-grams for more information.

(As a shortcut, if you don’t need to pass any arguments to the field type, you
can just give the class name and Whoosh will instantiate the object for you.)

from whoosh.fields import Schema, STORED, ID, KEYWORD, TEXT

schema = Schema(title=TEXT(stored=True), content=TEXT,
 path=ID(stored=True), tags=KEYWORD, icon=STORED)

See Designing a schema for more information.

Once you have the schema, you can create an index using the create_in
function:

import os.path
from whoosh.index import create_in

if not os.path.exists("index"):
 os.mkdir("index")
ix = create_in("index", schema)

(At a low level, this creates a Storage object to contain the index. A
Storage object represents that medium in which the index will be stored.
Usually this will be FileStorage, which stores the index as a set of files
in a directory.)

After you’ve created an index, you can open it using the open_dir
convenience function:

from whoosh.index import open_dir

ix = open_dir("index")

The IndexWriter object

OK, so we’ve got an Index object, now we can start adding documents. The
writer() method of the Index object returns an IndexWriter object that lets
you add documents to the index. The IndexWriter’s add_document(**kwargs)
method accepts keyword arguments where the field name is mapped to a value:

writer = ix.writer()
writer.add_document(title=u"My document", content=u"This is my document!",
 path=u"/a", tags=u"first short", icon=u"/icons/star.png")
writer.add_document(title=u"Second try", content=u"This is the second example.",
 path=u"/b", tags=u"second short", icon=u"/icons/sheep.png")
writer.add_document(title=u"Third time's the charm", content=u"Examples are many.",
 path=u"/c", tags=u"short", icon=u"/icons/book.png")
writer.commit()

Two important notes:

	You don’t have to fill in a value for every field. Whoosh doesn’t care if you
leave out a field from a document.

	Indexed text fields must be passed a unicode value. Fields that are stored
but not indexed (STORED field type) can be passed any pickle-able object.

If you have a text field that is both indexed and stored, you can index a
unicode value but store a different object if necessary (it’s usually not, but
sometimes this is really useful) using this trick:

writer.add_document(title=u"Title to be indexed", _stored_title=u"Stored title")

Calling commit() on the IndexWriter saves the added documents to the index:

writer.commit()

See How to index documents for more information.

Once your documents are committed to the index, you can search for them.

The Searcher object

To begin searching the index, we’ll need a Searcher object:

searcher = ix.searcher()

You’ll usually want to open the searcher using a with statement so the
searcher is automatically closed when you’re done with it (searcher objects
represent a number of open files, so if you don’t explicitly close them and the
system is slow to collect them, you can run out of file handles):

with ix.searcher() as searcher:
 ...

This is of course equivalent to:

try:
 searcher = ix.searcher()
 ...
finally:
 searcher.close()

The Searcher’s search() method takes a Query object. You can construct
query objects directly or use a query parser to parse a query string.

For example, this query would match documents that contain both “apple” and
“bear” in the “content” field:

Construct query objects directly

from whoosh.query import *
myquery = And([Term("content", u"apple"), Term("content", "bear")])

To parse a query string, you can use the default query parser in the qparser
module. The first argument to the QueryParser constructor is the default
field to search. This is usually the “body text” field. The second optional
argument is a schema to use to understand how to parse the fields:

Parse a query string

from whoosh.qparser import QueryParser
parser = QueryParser("content", ix.schema)
myquery = parser.parse(querystring)

Once you have a Searcher and a query object, you can use the Searcher‘s
search() method to run the query and get a Results object:

>>> results = searcher.search(myquery)
>>> print(len(results))
1
>>> print(results[0])
{"title": "Second try", "path": "/b", "icon": "/icons/sheep.png"}

The default QueryParser implements a query language very similar to
Lucene’s. It lets you connect terms with AND or OR, eleminate terms with
NOT, group terms together into clauses with parentheses, do range, prefix,
and wilcard queries, and specify different fields to search. By default it joins
clauses together with AND (so by default, all terms you specify must be in
the document for the document to match):

>>> print(parser.parse(u"render shade animate"))
And([Term("content", "render"), Term("content", "shade"), Term("content", "animate")])

>>> print(parser.parse(u"render OR (title:shade keyword:animate)"))
Or([Term("content", "render"), And([Term("title", "shade"), Term("keyword", "animate")])])

>>> print(parser.parse(u"rend*"))
Prefix("content", "rend")

Whoosh includes extra features for dealing with search results, such as

	Sorting results by the value of an indexed field, instead of by relelvance.

	Highlighting the search terms in excerpts from the original documents.

	Expanding the query terms based on the top few documents found.

	Paginating the results (e.g. “Showing results 1-20, page 1 of 4”).

See How to search for more information.

Introduction to Whoosh

About Whoosh

Whoosh was created by Matt Chaput. It started as a quick and dirty
search server for the online documentation of the Houdini [http://www.sidefx.com/]
3D animation software package. Side Effects Software generously allowed Matt to open source
the code in case it might be useful to anyone else who needs a very flexible or pure-Python
search engine (or both!).

	Whoosh is fast, but uses only pure Python, so it will run anywhere Python runs,
without requiring a compiler.

	By default, Whoosh uses the Okapi BM25F [http://en.wikipedia.com/wiki/Okapi_BM25] ranking
function, but like most things the ranking function can be easily customized.

	Whoosh creates fairly small indexes compared to many other search libraries.

	All indexed text in Whoosh must be unicode.

	Whoosh lets you store arbitrary Python objects with indexed documents.

What is Whoosh?

Whoosh is a fast, pure Python search engine library.

The primary design impetus of Whoosh is that it is pure Python. You should be able to
use Whoosh anywhere you can use Python, no compiler or Java required.

Like one of its ancestors, Lucene, Whoosh is not really a search engine, it’s a programmer
library for creating a search engine [1].

Practically no important behavior of Whoosh is hard-coded. Indexing
of text, the level of information stored for each term in each field, parsing of search queries,
the types of queries allowed, scoring algorithms, etc. are all customizable, replaceable, and
extensible.

	[1]	It would of course be possible to build a turnkey search engine on top of Whoosh,
like Nutch and Solr use Lucene.

What can Whoosh do for you?

Whoosh lets you index free-form or structured text and then quickly find matching
documents based on simple or complex search criteria.

Getting help with Whoosh

You can view outstanding issues on the
Whoosh Bitbucket page [http://bitbucket.org/mchaput/whoosh]
and get help on the Whoosh mailing list [http://groups.google.com/group/whoosh].

Glossary

	Analysis

	The process of breaking the text of a field into individual terms
to be indexed. This consists of tokenizing the text into terms, and then optionally
filtering the tokenized terms (for example, lowercasing and removing stop words).
Whoosh includes several different analyzers.

	Corpus

	The set of documents you are indexing.

	Documents

	The individual pieces of content you want to make searchable.
The word “documents” might imply files, but the data source could really be
anything – articles in a content management system, blog posts in a blogging
system, chunks of a very large file, rows returned from an SQL query, individual
email messages from a mailbox file, or whatever. When you get search results
from Whoosh, the results are a list of documents, whatever “documents” means in
your search engine.

	Fields

	Each document contains a set of fields. Typical fields might be “title”, “content”,
“url”, “keywords”, “status”, “date”, etc. Fields can be indexed (so they’re
searchable) and/or stored with the document. Storing the field makes it available
in search results. For example, you typically want to store the “title” field so
your search results can display it.

	Forward index

	A table listing every document and the words that appear in the document.
Whoosh lets you store term vectors that are a kind of forward index.

	Indexing

	The process of examining documents in the corpus and adding them to the
reverse index.

	Postings

	The reverse index lists every word in the corpus, and for each word, a list
of documents in which that word appears, along with some optional information
(such as the number of times the word appears in that document). These items
in the list, containing a document number and any extra information, are
called postings. In Whoosh the information stored in postings is customizable
for each field.

	Reverse index

	Basically a table listing every word in the corpus, and for each word, the
list of documents in which it appears. It can be more complicated (the index can
also list how many times the word appears in each document, the positions at which
it appears, etc.) but that’s how it basically works.

	Schema

	Whoosh requires that you specify the fields of the index before you begin
indexing. The Schema associates field names with metadata about the field, such
as the format of the postings and whether the contents of the field are stored
in the index.

	Term vector

	A forward index for a certain field in a certain document. You can specify
in the Schema that a given field should store term vectors.

Designing a schema

About schemas and fields

The schema specifies the fields of documents in an index.

Each document can have multiple fields, such as title, content, url, date, etc.

Some fields can be indexed, and some fields can be stored with the document so
the field value is available in search results.
Some fields will be both indexed and stored.

The schema is the set of all possible fields in a document. Each individual
document might only use a subset of the available fields in the schema.

For example, a simple schema for indexing emails might have fields like
from_addr, to_addr, subject, body, and attachments, where
the attachments field lists the names of attachments to the email. For
emails without attachments, you would omit the attachments field.

Built-in field types

Whoosh provides some useful predefined field types:

	whoosh.fields.TEXT

	This type is for body text. It indexes (and optionally stores) the text and
stores term positions to allow phrase searching.

TEXT fields use StandardAnalyzer by default. To specify a different
analyzer, use the analyzer keyword argument to the constructor, e.g.
TEXT(analyzer=analysis.StemmingAnalyzer()). See About analyzers.

By default, TEXT fields store position information for each indexed term, to
allow you to search for phrases. If you don’t need to be able to search for
phrases in a text field, you can turn off storing term positions to save
space. Use TEXT(phrase=False).

By default, TEXT fields are not stored. Usually you will not want to store
the body text in the search index. Usually you have the indexed documents
themselves available to read or link to based on the search results, so you
don’t need to store their text in the search index. However, in some
circumstances it can be useful (see How to create highlighted search result excerpts). Use
TEXT(stored=True) to specify that the text should be stored in the index.

	whoosh.fields.KEYWORD

	This field type is designed for space- or comma-separated keywords. This
type is indexed and searchable (and optionally stored). To save space, it
does not support phrase searching.

To store the value of the field in the index, use stored=True in the
constructor. To automatically lowercase the keywords before indexing them,
use lowercase=True.

By default, the keywords are space separated. To separate the keywords by
commas instead (to allow keywords containing spaces), use commas=True.

If your users will use the keyword field for searching, use scorable=True.

	whoosh.fields.ID

	The ID field type simply indexes (and optionally stores) the entire value of
the field as a single unit (that is, it doesn’t break it up into individual
terms). This type of field does not store frequency information, so it’s
quite compact, but not very useful for scoring.

Use ID for fields like url or path (the URL or file path of a document),
date, category – fields where the value must be treated as a whole, and
each document only has one value for the field.

By default, ID fields are not stored. Use ID(stored=True) to specify that
the value of the field should be stored with the document for use in the
search results. For example, you would want to store the value of a url
field so you could provide links to the original in your search results.

	whoosh.fields.STORED

	This field is stored with the document, but not indexed and not searchable.
This is useful for document information you want to display to the user in
the search results, but don’t need to be able to search for.

	whoosh.fields.NUMERIC

	This field stores int, long, or floating point numbers in a compact,
sortable format.

	whoosh.fields.DATETIME

	This field stores datetime objects in a compact, sortable format.

	whoosh.fields.BOOLEAN

	This simple filed indexes boolean values and allows users to search for
yes, no, true, false, 1, 0, t or f.

	whoosh.fields.NGRAM

	TBD.

Expert users can create their own field types.

Creating a Schema

To create a schema:

from whoosh.fields import Schema, TEXT, KEYWORD, ID, STORED
from whoosh.analysis import StemmingAnalyzer

schema = Schema(from_addr=ID(stored=True),
 to_addr=ID(stored=True),
 subject=TEXT(stored=True),
 body=TEXT(analyzer=StemmingAnalyzer()),
 tags=KEYWORD)

If you aren’t specifying any constructor keyword arguments to one of the
predefined fields, you can leave off the brackets (e.g. fieldname=TEXT instead
of fieldname=TEXT()). Whoosh will instantiate the class for you.

Alternatively you can create a schema declaratively using the SchemaClass
base class:

from whoosh.fields import SchemaClass, TEXT, KEYWORD, ID, STORED

class MySchema(SchemaClass):
 path = ID(stored=True)
 title = TEXT(stored=True)
 content = TEXT
 tags = KEYWORD

You can pass a declarative class to create_in() or
create_index() instead of a
Schema instance.

Modifying the schema after indexing

After you have created an index, you can add or remove fields to the schema
using the add_field() and remove_field() methods. These methods are
on the Writer object:

writer = ix.writer()
writer.add_field("fieldname", fields.TEXT(stored=True))
writer.remove_field("content")
writer.commit()

(If you’re going to modify the schema and add documents using the same
writer, you must call add_field() and/or remove_field before you
add any documents.)

These methods are also on the Index object as a convenience, but when you
call them on an Index, the Index object simply creates the writer, calls
the corresponding method on it, and commits, so if you want to add or remove
more than one field, it’s much more efficient to create the writer yourself:

ix.add_field("fieldname", fields.KEYWORD)

In the filedb backend, removing a field simply removes that field from the
schema – the index will not get smaller, data about that field will remain
in the index until you optimize. Optimizing will compact the index, removing
references to the deleted field as it goes:

writer = ix.writer()
writer.add_field("uuid", fields.ID(stored=True))
writer.remove_field("path")
writer.commit(optimize=True)

Because data is stored on disk with the field name, do not add a new field with
the same name as a deleted field without optimizing the index in between:

writer = ix.writer()
writer.delete_field("path")
Don't do this!!!
writer.add_field("path", fields.KEYWORD)

(A future version of Whoosh may automatically prevent this error.)

Dynamic fields

Dynamic fields let you associate a field type with any field name that matches
a given “glob” (a name pattern containing *, ?, and/or [abc]
wildcards).

You can add dynamic fields to a new schema using the add() method with the
glob keyword set to True:

schema = fields.Schema(...)
Any name ending in "_d" will be treated as a stored
DATETIME field
schema.add("*_d", fields.DATETIME(stored=True), glob=True)

To set up a dynamic field on an existing index, use the same
IndexWriter.add_field method as if you were adding a regular field, but
with the glob keyword argument set to True:

writer = ix.writer()
writer.add_field("*_d", fields.DATETIME(stored=True), glob=True)
writer.commit()

To remove a dynamic field, use the IndexWriter.remove_field() method with
the glob as the name:

writer = ix.writer()
writer.remove_field("*_d")
writer.commit()

For example, to allow documents to contain any field name that ends in _id
and associate it with the ID field type:

schema = fields.Schema(path=fields.ID)
schema.add("*_id", fields.ID, glob=True)

ix = index.create_in("myindex", schema)

w = ix.writer()
w.add_document(path=u"/a", test_id=u"alfa")
w.add_document(path=u"/b", class_id=u"MyClass")
...
w.commit()

qp = qparser.QueryParser("path", schema=schema)
q = qp.parse(u"test_id:alfa")
with ix.searcher() as s:
 results = s.search(q)

Advanced schema setup

Field boosts

You can specify a field boost for a field. This is a multiplier applied to the
score of any term found in the field. For example, to make terms found in the
title field score twice as high as terms in the body field:

schema = Schema(title=TEXT(field_boost=2.0), body=TEXT)

Field types

The predefined field types listed above are subclasses of fields.FieldType.
FieldType is a pretty simple class. Its attributes contain information that
define the behavior of a field.

	Attribute
	Type
	Description

	format
	fields.Format
	Defines what kind of information a field records
about each term, and how the information is stored
on disk.

	vector
	fields.Format
	Optional: if defined, the format in which to store
per-document forward-index information for this field.

	scorable
	bool
	If True, the length of (number of terms in) the field in
each document is stored in the index. Slightly misnamed,
since field lengths are not required for all scoring.
However, field lengths are required to get proper
results from BM25F.

	stored
	bool
	If True, the value of this field is stored
in the index.

	unique
	bool
	If True, the value of this field may be used to
replace documents with the same value when the user
calls
document_update()
on an IndexWriter.

The constructors for most of the predefined field types have parameters that let
you customize these parts. For example:

	Most of the predefined field types take a stored keyword argument that sets
FieldType.stored.

	The TEXT() constructor takes an analyzer keyword argument that is
passed on to the format object.

Formats

A Format object defines what kind of information a field records about each
term, and how the information is stored on disk.

For example, the Existence format would store postings like this:

	Doc
	

	10
	

	20
	

	30
	

Whereas the Positions format would store postings like this:

	Doc
	Positions

	10
	[1,5,23]

	20
	[45]

	30
	[7,12]

The indexing code passes the unicode string for a field to the field’s Format
object. The Format object calls its analyzer (see text analysis) to break the
string into tokens, then encodes information about each token.

Whoosh ships with the following pre-defined formats.

	Class name
	Description

	Stored
	A “null” format for fields that are stored but not indexed.

	Existence
	Records only whether a term is in a document or not, i.e. it
does not store term frequency. Useful for identifier fields
(e.g. path or id) and “tag”-type fields, where the frequency
is expected to always be 0 or 1.

	Frequency
	Stores the number of times each term appears in each document.

	Positions
	Stores the number of times each term appears in each document,
and at what positions.

The STORED field type uses the Stored format (which does nothing, so STORED
fields are not indexed). The ID type uses the Existence format. The KEYWORD type
uses the Frequency format. The TEXT type uses the Positions format if it is
instantiated with phrase=True (the default), or Frequency if phrase=False.

In addition, the following formats are implemented for the possible convenience
of expert users, but are not currently used in Whoosh:

	Class name
	Description

	DocBoosts
	Like Existence, but also stores per-document boosts

	Characters
	Like Positions, but also stores the start and end character
indices of each term

	PositionBoosts
	Like Positions, but also stores per-position boosts

	CharacterBoosts
	Like Positions, but also stores the start and end character
indices of each term and per-position boosts

Vectors

The main index is an inverted index. It maps terms to the documents they appear
in. It is also sometimes useful to store a forward index, also known as a term
vector, that maps documents to the terms that appear in them.

For example, imagine an inverted index like this for a field:

	Term
	Postings

	apple
	[(doc=1, freq=2), (doc=2, freq=5), (doc=3, freq=1)]

	bear
	[(doc=2, freq=7)]

The corresponding forward index, or term vector, would be:

	Doc
	Postings

	1
	[(text=apple, freq=2)]

	2
	[(text=apple, freq=5), (text='bear', freq=7)]

	3
	[(text=apple, freq=1)]

If you set FieldType.vector to a Format object, the indexing code will use the
Format object to store information about the terms in each document. Currently
by default Whoosh does not make use of term vectors at all, but they are
available to expert users who want to implement their own field types.

How to index documents

Creating an Index object

To create an index in a directory, use index.create_in:

import os, os.path
from whoosh import index

if not os.path.exists("indexdir"):
 os.mkdir("indexdir")

ix = index.create_in("indexdir", schema)

To open an existing index in a directory, use index.open_dir:

import whoosh.index as index

ix = index.open_dir("indexdir")

These are convenience methods for:

from whoosh.filedb.filestore import FileStorage
storage = FileStorage("indexdir")

Create an index
ix = storage.create_index(schema)

Open an existing index
storage.open_index()

The schema you created the index with is pickled and stored with the index.

You can keep multiple indexes in the same directory using the indexname keyword
argument:

Using the convenience functions
ix = index.create_in("indexdir", schema=schema, indexname="usages")
ix = index.open_dir("indexdir", indexname="usages")

Using the Storage object
ix = storage.create_index(schema, indexname="usages")
ix = storage.open_index(indexname="usages")

Clearing the index

Calling index.create_in on a directory with an existing index will clear the
current contents of the index.

To test whether a directory currently contains a valid index, use
index.exists_in:

exists = index.exists_in("indexdir")
usages_exists = index.exists_in("indexdir", indexname="usages")

(Alternatively you can simply delete the index’s files from the directory, e.g.
if you only have one index in the directory, use shutil.rmtree to remove the
directory and then recreate it.)

Indexing documents

Once you’ve created an Index object, you can add documents to the index with an
IndexWriter object. The easiest way to get the IndexWriter is to call
Index.writer():

ix = index.open_dir("index")
writer = ix.writer()

Creating a writer locks the index for writing, so only one thread/process at
a time can have a writer open.

Note

Because opening a writer locks the index for writing, in a multi-threaded
or multi-process environment your code needs to be aware that opening a
writer may raise an exception (whoosh.store.LockError) if a writer is
already open. Whoosh includes a couple of example implementations
(whoosh.writing.AsyncWriter and
whoosh.writing.BufferedWriter) of ways to work around the write
lock.

Note

While the writer is open and during the commit, the index is still
available for reading. Existing readers are unaffected and new readers can
open the current index normally. Once the commit is finished, existing
readers continue to see the previous version of the index (that is, they
do not automatically see the newly committed changes). New readers will see
the updated index.

The IndexWriter’s add_document(**kwargs) method accepts keyword arguments
where the field name is mapped to a value:

writer = ix.writer()
writer.add_document(title=u"My document", content=u"This is my document!",
 path=u"/a", tags=u"first short", icon=u"/icons/star.png")
writer.add_document(title=u"Second try", content=u"This is the second example.",
 path=u"/b", tags=u"second short", icon=u"/icons/sheep.png")
writer.add_document(title=u"Third time's the charm", content=u"Examples are many.",
 path=u"/c", tags=u"short", icon=u"/icons/book.png")
writer.commit()

You don’t have to fill in a value for every field. Whoosh doesn’t care if you
leave out a field from a document.

Indexed fields must be passed a unicode value. Fields that are stored but not
indexed (i.e. the STORED field type) can be passed any pickle-able object.

Whoosh will happily allow you to add documents with identical values, which can
be useful or annoying depending on what you’re using the library for:

writer.add_document(path=u"/a", title=u"A", content=u"Hello there")
writer.add_document(path=u"/a", title=u"A", content=u"Deja vu!")

This adds two documents to the index with identical path and title fields. See
“updating documents” below for information on the update_document method, which
uses “unique” fields to replace old documents instead of appending.

Indexing and storing different values for the same field

If you have a field that is both indexed and stored, you can index a unicode
value but store a different object if necessary (it’s usually not, but sometimes
this is really useful) using a “special” keyword argument _stored_<fieldname>.
The normal value will be analyzed and indexed, but the “stored” value will show
up in the results:

writer.add_document(title=u"Title to be indexed", _stored_title=u"Stored title")

Finishing adding documents

An IndexWriter object is kind of like a database transaction. You specify a
bunch of changes to the index, and then “commit” them all at once.

Calling commit() on the IndexWriter saves the added documents to the
index:

writer.commit()

Once your documents are in the index, you can search for them.

If you want to close the writer without committing the changes, call
cancel() instead of commit():

writer.cancel()

Keep in mind that while you have a writer open (including a writer you opened
and is still in scope), no other thread or process can get a writer or modify
the index. A writer also keeps several open files. So you should always remember
to call either commit() or cancel() when you’re done with a writer object.

Merging segments

A Whoosh filedb index is really a container for one or more “sub-indexes”
called segments. When you add documents to an index, instead of integrating the
new documents with the existing documents (which could potentially be very
expensive, since it involves resorting all the indexed terms on disk), Whoosh
creates a new segment next to the existing segment. Then when you search the
index, Whoosh searches both segments individually and merges the results so the
segments appear to be one unified index. (This smart design is copied from
Lucene.)

So, having a few segments is more efficient than rewriting the entire index
every time you add some documents. But searching multiple segments does slow
down searching somewhat, and the more segments you have, the slower it gets. So
Whoosh has an algorithm that runs when you call commit() that looks for small
segments it can merge together to make fewer, bigger segments.

To prevent Whoosh from merging segments during a commit, use the merge
keyword argument:

writer.commit(merge=False)

To merge all segments together, optimizing the index into a single segment,
use the optimize keyword argument:

writer.commit(optimize=True)

Since optimizing rewrites all the information in the index, it can be slow on
a large index. It’s generally better to rely on Whoosh’s merging algorithm than
to optimize all the time.

(The Index object also has an optimize() method that lets you optimize the
index (merge all the segments together). It simply creates a writer and calls
commit(optimize=True) on it.)

For more control over segment merging, you can write your own merge policy
function and use it as an argument to the commit() method. See the
implementation of the NO_MERGE, MERGE_SMALL, and OPTIMIZE functions
in the whoosh.writing module.

Deleting documents

You can delete documents using the following methods on an IndexWriter
object. You then need to call commit() on the writer to save the deletions
to disk.

delete_document(docnum)

Low-level method to delete a document by its internal document number.

is_deleted(docnum)

Low-level method, returns True if the document with the given internal
number is deleted.

delete_by_term(fieldname, termtext)

Deletes any documents where the given (indexed) field contains the given
term. This is mostly useful for ID or KEYWORD fields.

delete_by_query(query)

Deletes any documents that match the given query.

Delete document by its path -- this field must be indexed
ix.delete_by_term('path', u'/a/b/c')
Save the deletion to disk
ix.commit()

In the filedb backend, “deleting” a document simply adds the document number
to a list of deleted documents stored with the index. When you search the index,
it knows not to return deleted documents in the results. However, the document’s
contents are still stored in the index, and certain statistics (such as term
document frequencies) are not updated, until you merge the segments containing
deleted documents (see merging above). (This is because removing the information
immediately from the index would essentially involving rewriting the entire
index on disk, which would be very inefficient.)

Updating documents

If you want to “replace” (re-index) a document, you can delete the old document
using one of the delete_* methods on Index or IndexWriter, then use
IndexWriter.add_document to add the new version. Or, you can use
IndexWriter.update_document to do this in one step.

For update_document to work, you must have marked at least one of the fields
in the schema as “unique”. Whoosh will then use the contents of the “unique”
field(s) to search for documents to delete:

from whoosh.fields import Schema, ID, TEXT

schema = Schema(path = ID(unique=True), content=TEXT)

ix = index.create_in("index")
writer = ix.writer()
writer.add_document(path=u"/a", content=u"The first document")
writer.add_document(path=u"/b", content=u"The second document")
writer.commit()

writer = ix.writer()
Because "path" is marked as unique, calling update_document with path="/a"
will delete any existing documents where the "path" field contains "/a".
writer.update_document(path=u"/a", content="Replacement for the first document")
writer.commit()

The “unique” field(s) must be indexed.

If no existing document matches the unique fields of the document you’re
updating, update_document acts just like add_document.

“Unique” fields and update_document are simply convenient shortcuts for deleting
and adding. Whoosh has no inherent concept of a unique identifier, and in no way
enforces uniqueness when you use add_document.

Incremental indexing

When you’re indexing a collection of documents, you’ll often want two code
paths: one to index all the documents from scratch, and one to only update the
documents that have changed (leaving aside web applications where you need to
add/update documents according to user actions).

Indexing everything from scratch is pretty easy. Here’s a simple example:

import os.path
from whoosh import index
from whoosh.fields import Schema, ID, TEXT

def clean_index(dirname):
 # Always create the index from scratch
 ix = index.create_in(dirname, schema=get_schema())
 writer = ix.writer()

 # Assume we have a function that gathers the filenames of the
 # documents to be indexed
 for path in my_docs():
 add_doc(writer, path)

 writer.commit()

def get_schema()
 return Schema(path=ID(unique=True, stored=True), content=TEXT)

def add_doc(writer, path):
 fileobj = open(path, "rb")
 content = fileobj.read()
 fileobj.close()
 writer.add_document(path=path, content=content)

Now, for a small collection of documents, indexing from scratch every time might
actually be fast enough. But for large collections, you’ll want to have the
script only re-index the documents that have changed.

To start we’ll need to store each document’s last-modified time, so we can check
if the file has changed. In this example, we’ll just use the mtime for
simplicity:

def get_schema()
 return Schema(path=ID(unique=True, stored=True), time=STORED, content=TEXT)

def add_doc(writer, path):
 fileobj = open(path, "rb")
 content = fileobj.read()
 fileobj.close()
 modtime = os.path.getmtime(path)
 writer.add_document(path=path, content=content, time=modtime)

Now we can modify the script to allow either “clean” (from scratch) or
incremental indexing:

def index_my_docs(dirname, clean=False):
 if clean:
 clean_index(dirname)
 else:
 incremental_index(dirname)

def incremental_index(dirname)
 ix = index.open_dir(dirname)

 # The set of all paths in the index
 indexed_paths = set()
 # The set of all paths we need to re-index
 to_index = set()

 with ix.searcher() as searcher:
 writer = ix.writer()

 # Loop over the stored fields in the index
 for fields in searcher.all_stored_fields():
 indexed_path = fields['path']
 indexed_paths.add(indexed_path)

 if not os.path.exists(indexed_path):
 # This file was deleted since it was indexed
 writer.delete_by_term('path', indexed_path)

 else:
 # Check if this file was changed since it
 # was indexed
 indexed_time = fields['time']
 mtime = os.path.getmtime(indexed_path)
 if mtime > indexed_time:
 # The file has changed, delete it and add it to the list of
 # files to reindex
 writer.delete_by_term('path', indexed_path)
 to_index.add(indexed_path)

 # Loop over the files in the filesystem
 # Assume we have a function that gathers the filenames of the
 # documents to be indexed
 for path in my_docs():
 if path in to_index or path not in indexed_paths:
 # This is either a file that's changed, or a new file
 # that wasn't indexed before. So index it!
 add_doc(writer, path)

 writer.commit()

The incremental_index function:

	Loops through all the paths that are currently indexed.
	If any of the files no longer exist, delete the corresponding document from
the index.

	If the file still exists, but has been modified, add it to the list of paths
to be re-indexed.

	If the file exists, whether it’s been modified or not, add it to the list of
all indexed paths.

	Loops through all the paths of the files on disk.
	If a path is not in the set of all indexed paths, the file is new and we
need to index it.

	If a path is in the set of paths to re-index, we need to index it.

	Otherwise, we can skip indexing the file.

Clearing the index

In some cases you may want to re-index from scratch. To clear the index without
disrupting any existing readers:

from whoosh import writing

with myindex.writer() as mywriter:
 # You can optionally add documents to the writer here
 # e.g. mywriter.add_document(...)

 # Using mergetype=CLEAR clears all existing segments so the index will
 # only have any documents you've added to this writer
 mywriter.mergetype = writing.CLEAR

Or, if you don’t use the writer as a context manager and call commit()
directly, do it like this:

mywriter = myindex.writer()
...
mywriter.commit(mergetype=writing.CLEAR)

Note

If you don’t need to worry about existing readers, a more efficient method
is to simply delete the contents of the index directory and start over.

How to search

Once you’ve created an index and added documents to it, you can search for those
documents.

The Searcher object

To get a whoosh.searching.Searcher object, call searcher() on your
Index object:

searcher = myindex.searcher()

You’ll usually want to open the searcher using a with statement so the
searcher is automatically closed when you’re done with it (searcher objects
represent a number of open files, so if you don’t explicitly close them and the
system is slow to collect them, you can run out of file handles):

with ix.searcher() as searcher:
 ...

This is of course equivalent to:

try:
 searcher = ix.searcher()
 ...
finally:
 searcher.close()

The Searcher object is the main high-level interface for reading the index. It
has lots of useful methods for getting information about the index, such as
lexicon(fieldname).

>>> list(searcher.lexicon("content"))
[u"document", u"index", u"whoosh"]

However, the most important method on the Searcher object is
search(), which takes a
whoosh.query.Query object and returns a
Results object:

from whoosh.qparser import QueryParser

qp = QueryParser("content", schema=myindex.schema)
q = qp.parse(u"hello world")

with myindex.searcher() as s:
 results = s.search(q)

By default the results contains at most the first 10 matching documents. To get
more results, use the limit keyword:

results = s.search(q, limit=20)

If you want all results, use limit=None. However, setting the limit whenever
possible makes searches faster because Whoosh doesn’t need to examine and score
every document.

Since displaying a page of results at a time is a common pattern, the
search_page method lets you conveniently retrieve only the results on a
given page:

results = s.search_page(q, 1)

The default page length is 10 hits. You can use the pagelen keyword argument
to set a different page length:

results = s.search_page(q, 5, pagelen=20)

Results object

The Results object acts like a list of the matched
documents. You can use it to access the stored fields of each hit document, to
display to the user.

>>> # Show the best hit's stored fields
>>> results[0]
{"title": u"Hello World in Python", "path": u"/a/b/c"}
>>> results[0:2]
[{"title": u"Hello World in Python", "path": u"/a/b/c"},
{"title": u"Foo", "path": u"/bar"}]

By default, Searcher.search(myquery) limits the number of hits to 20, So the
number of scored hits in the Results object may be less than the number of
matching documents in the index.

>>> # How many documents in the entire index would have matched?
>>> len(results)
27
>>> # How many scored and sorted documents in this Results object?
>>> # This will often be less than len() if the number of hits was limited
>>> # (the default).
>>> results.scored_length()
10

Calling len(Results) runs a fast (unscored) version of the query again to
figure out the total number of matching documents. This is usually very fast
but for large indexes it can cause a noticeable delay. If you want to avoid
this delay on very large indexes, you can use the
has_exact_length(),
estimated_length(), and
estimated_min_length() methods to estimate the
number of matching documents without calling len():

found = results.scored_length()
if results.has_exact_length():
 print("Scored", found, "of exactly", len(results), "documents")
else:
 low = results.estimated_min_length()
 high = results.estimated_length()

 print("Scored", found, "of between", low, "and", high, "documents")

Scoring and sorting

Scoring

Normally the list of result documents is sorted by score. The
whoosh.scoring module contains implementations of various scoring
algorithms. The default is BM25F.

You can set the scoring object to use when you create the searcher using the
weighting keyword argument:

from whoosh import scoring

with myindex.searcher(weighting=scoring.TF_IDF()) as s:
 ...

A weighting model is a WeightingModel subclass with a
scorer() method that produces a “scorer” instance. This instance has a
method that takes the current matcher and returns a floating point score.

Sorting

See Sorting and faceting.

Highlighting snippets and More Like This

See How to create highlighted search result excerpts and Query expansion and Key word extraction for information on these topics.

Filtering results

You can use the filter keyword argument to search() to specify a set of
documents to permit in the results. The argument can be a
whoosh.query.Query object, a whoosh.searching.Results object,
or a set-like object containing document numbers. The searcher caches filters
so if for example you use the same query filter with a searcher multiple times,
the additional searches will be faster because the searcher will cache the
results of running the filter query

You can also specify a mask keyword argument to specify a set of documents
that are not permitted in the results.

with myindex.searcher() as s:
 qp = qparser.QueryParser("content", myindex.schema)
 user_q = qp.parse(query_string)

 # Only show documents in the "rendering" chapter
 allow_q = query.Term("chapter", "rendering")
 # Don't show any documents where the "tag" field contains "todo"
 restrict_q = query.Term("tag", "todo")

 results = s.search(user_q, filter=allow_q, mask=restrict_q)

(If you specify both a filter and a mask, and a matching document
appears in both, the mask “wins” and the document is not permitted.)

To find out how many results were filtered out of the results, use
results.filtered_count (or resultspage.results.filtered_count):

with myindex.searcher() as s:
 qp = qparser.QueryParser("content", myindex.schema)
 user_q = qp.parse(query_string)

 # Filter documents older than 7 days
 old_q = query.DateRange("created", None, datetime.now() - timedelta(days=7))
 results = s.search(user_q, mask=old_q)

 print("Filtered out %d older documents" % results.filtered_count)

Which terms from my query matched?

You can use the terms=True keyword argument to search() to have the
search record which terms in the query matched which documents:

with myindex.searcher() as s:
 results = s.seach(myquery, terms=True)

You can then get information about which terms matched from the
whoosh.searching.Results and whoosh.searching.Hit objects:

Was this results object created with terms=True?
if results.has_matched_terms():
 # What terms matched in the results?
 print(results.matched_terms())

 # What terms matched in each hit?
 for hit in results:
 print(hit.matched_terms())

Collapsing results

Whoosh lets you eliminate all but the top N documents with the same facet key
from the results. This can be useful in a few situations:

	Eliminating duplicates at search time.

	Restricting the number of matches per source. For example, in a web search
application, you might want to show at most three matches from any website.

Whether a document should be collapsed is determined by the value of a “collapse
facet”. If a document has an empty collapse key, it will never be collapsed,
but otherwise only the top N documents with the same collapse key will appear
in the results.

See Sorting and faceting for information on facets.

with myindex.searcher() as s:
 # Set the facet to collapse on and the maximum number of documents per
 # facet value (default is 1)
 results = s.collector(collapse="hostname", collapse_limit=3)

 # Dictionary mapping collapse keys to the number of documents that
 # were filtered out by collapsing on that key
 print(results.collapsed_counts)

Collapsing works with both scored and sorted results. You can use any of the
facet types available in the whoosh.sorting module.

By default, Whoosh uses the results order (score or sort key) to determine the
documents to collapse. For example, in scored results, the best scoring
documents would be kept. You can optionally specify a collapse_order facet
to control which documents to keep when collapsing.

For example, in a product search you could display results sorted by decreasing
price, and eliminate all but the highest rated item of each product type:

from whoosh import sorting

with myindex.searcher() as s:
 price_facet = sorting.FieldFacet("price", reverse=True)
 type_facet = sorting.FieldFacet("type")
 rating_facet = sorting.FieldFacet("rating", reverse=True)

 results = s.collector(sortedby=price_facet, # Sort by reverse price
 collapse=type_facet, # Collapse on product type
 collapse_order=rating_facet # Collapse to highest rated
)

The collapsing happens during the search, so it is usually more efficient than
finding everything and post-processing the results. However, if the collapsing
eliminates a large number of documents, collapsed search can take longer
because the search has to consider more documents and remove many
already-collected documents.

Since this collector must sometimes go back and remove already-collected
documents, if you use it in combination with
TermsCollector and/or
FacetCollector, those collectors may contain
information about documents that were filtered out of the final results by
collapsing.

Time limited searches

To limit the amount of time a search can take:

from whoosh.collectors import TimeLimitCollector, TimeLimit

with myindex.searcher() as s:
 # Get a collector object
 c = s.collector(limit=None, sortedby="title_exact")
 # Wrap it in a TimeLimitedCollector and set the time limit to 10 seconds
 tlc = TimeLimitedCollector(c, timelimit=10.0)

 # Try searching
 try:
 s.search_with_collector(myquery, tlc)
 except TimeLimit:
 print("Search took too long, aborting!")

 # You can still get partial results from the collector
 results = tlc.results()

Convenience methods

The document() and
documents() methods on the Searcher object let
you retrieve the stored fields of documents matching terms you pass in keyword
arguments.

This is especially useful for fields such as dates/times, identifiers, paths,
and so on.

>>> list(searcher.documents(indexeddate=u"20051225"))
[{"title": u"Christmas presents"}, {"title": u"Turkey dinner report"}]
>>> print searcher.document(path=u"/a/b/c")
{"title": "Document C"}

These methods have some limitations:

	The results are not scored.

	Multiple keywords are always AND-ed together.

	The entire value of each keyword argument is considered a single term; you
can’t search for multiple terms in the same field.

Combining Results objects

It is sometimes useful to use the results of another query to influence the
order of a whoosh.searching.Results object.

For example, you might have a “best bet” field. This field contains hand-picked
keywords for documents. When the user searches for those keywords, you want
those documents to be placed at the top of the results list. You could try to
do this by boosting the “bestbet” field tremendously, but that can have
unpredictable effects on scoring. It’s much easier to simply run the query
twice and combine the results:

Parse the user query
userquery = queryparser.parse(querystring)

Get the terms searched for
termset = set()
userquery.existing_terms(termset)

Formulate a "best bet" query for the terms the user
searched for in the "content" field
bbq = Or([Term("bestbet", text) for fieldname, text
 in termset if fieldname == "content"])

Find documents matching the searched for terms
results = s.search(bbq, limit=5)

Find documents that match the original query
allresults = s.search(userquery, limit=10)

Add the user query results on to the end of the "best bet"
results. If documents appear in both result sets, push them
to the top of the combined results.
results.upgrade_and_extend(allresults)

The Results object supports the following methods:

	Results.extend(results)

	Adds the documents in ‘results’ on to the end of the list of result
documents.

	Results.filter(results)

	Removes the documents in ‘results’ from the list of result documents.

	Results.upgrade(results)

	Any result documents that also appear in ‘results’ are moved to the top
of the list of result documents.

	Results.upgrade_and_extend(results)

	Any result documents that also appear in ‘results’ are moved to the top
of the list of result documents. Then any other documents in ‘results’ are
added on to the list of result documents.

Parsing user queries

Overview

The job of a query parser is to convert a query string submitted by a user
into query objects (objects from the whoosh.query module).

For example, the user query:

rendering shading

might be parsed into query objects like this:

And([Term("content", u"rendering"), Term("content", u"shading")])

Whoosh includes a powerful, modular parser for user queries in the
whoosh.qparser module. The default parser implements a query language
similar to the one that ships with Lucene. However, by changing plugins or using
functions such as whoosh.qparser.MultifieldParser(),
whoosh.qparser.SimpleParser() or whoosh.qparser.DisMaxParser(), you
can change how the parser works, get a simpler parser or change the query
language syntax.

(In previous versions of Whoosh, the query parser was based on pyparsing.
The new hand-written parser is less brittle and more flexible.)

Note

Remember that you can directly create query objects programmatically using
the objects in the whoosh.query module. If you are not processing
actual user queries, this is preferable to building a query string just to
parse it.

Using the default parser

To create a whoosh.qparser.QueryParser object, pass it the name of the
default field to search and the schema of the index you’ll be searching.

from whoosh.qparser import QueryParser

parser = QueryParser("content", schema=myindex.schema)

Tip

You can instantiate a QueryParser object without specifying a schema,
however the parser will not process the text of the user query. This is
useful for debugging, when you want to see how QueryParser will build a
query, but don’t want to make up a schema just for testing.

Once you have a QueryParser object, you can call parse() on it to parse a
query string into a query object:

>>> parser.parse(u"alpha OR beta gamma")
And([Or([Term('content', u'alpha'), Term('content', u'beta')]), Term('content', u'gamma')])

See the query language reference for the features and syntax
of the default parser’s query language.

Common customizations

Searching for any terms instead of all terms by default

If the user doesn’t explicitly specify AND or OR clauses:

physically based rendering

...by default, the parser treats the words as if they were connected by AND,
meaning all the terms must be present for a document to match:

physically AND based AND rendering

To change the parser to use OR instead, so that any of the terms may be
present for a document to match, i.e.:

physically OR based OR rendering

...configure the QueryParser using the group keyword argument like this:

from whoosh import qparser

parser = qparser.QueryParser(fieldname, schema=myindex.schema,
 group=qparser.OrGroup)

The Or query lets you specify that documents that contain more of the query
terms score higher. For example, if the user searches for foo bar, a
document with four occurances of foo would normally outscore a document
that contained one occurance each of foo and bar. However, users
usually expect documents that contain more of the words they searched for
to score higher. To configure the parser to produce Or groups with this
behavior, use the factory() class method of OrGroup:

og = qparser.OrGroup.factory(0.9)
parser = qparser.QueryParser(fieldname, schema, group=og)

where the argument to factory() is a scaling factor on the bonus
(between 0 and 1).

Letting the user search multiple fields by default

The default QueryParser configuration takes terms without explicit fields and
assigns them to the default field you specified when you created the object, so
for example if you created the object with:

parser = QueryParser("content", schema=myschema)

And the user entered the query:

three blind mice

The parser would treat it as:

content:three content:blind content:mice

However, you might want to let the user search multiple fields by default. For
example, you might want “unfielded” terms to search both the title and
content fields.

In that case, you can use a whoosh.qparser.MultifieldParser. This is
just like the normal QueryParser, but instead of a default field name string, it
takes a sequence of field names:

from whoosh.qparser import MultifieldParser

mparser = MultifieldParser(["title", "content"], schema=myschema)

When this MultifieldParser instance parses three blind mice, it treats it
as:

(title:three OR content:three) (title:blind OR content:blind) (title:mice OR content:mice)

Simplifying the query language

Once you have a parser:

parser = qparser.QueryParser("content", schema=myschema)

you can remove features from it using the
remove_plugin_class() method.

For example, to remove the ability of the user to specify fields to search:

parser.remove_plugin_class(qparser.FieldsPlugin)

To remove the ability to search for wildcards, which can be harmful to query
performance:

parser.remove_plugin_class(qparser.WildcardPlugin)

See qparser module for information about the plugins included with
Whoosh’s query parser.

Changing the AND, OR, ANDNOT, ANDMAYBE, and NOT syntax

The default parser uses English keywords for the AND, OR, ANDNOT, ANDMAYBE,
and NOT functions:

parser = qparser.QueryParser("content", schema=myschema)

You can replace the default OperatorsPlugin object to
replace the default English tokens with your own regular expressions.

The whoosh.qparser.OperatorsPlugin implements the ability to use AND,
OR, NOT, ANDNOT, and ANDMAYBE clauses in queries. You can instantiate a new
OperatorsPlugin and use the And, Or, Not, AndNot, and
AndMaybe keyword arguments to change the token patterns:

Use Spanish equivalents instead of AND and OR
op = qparser.OperatorsPlugin(And=" Y ", Or=" O ")
parser.replace_plugin(op)

Further, you may change the syntax of the NOT operator:

np = qparser.OperatorsPlugin(Not=' NO ')
parser.replace_plugin(np)

The arguments can be pattern strings or precompiled regular expression objects.

For example, to change the default parser to use typographic symbols instead of
words for the AND, OR, ANDNOT, ANDMAYBE, and NOT functions:

parser = qparser.QueryParser("content", schema=myschema)
These are regular expressions, so we have to escape the vertical bar
op = qparser.OperatorsPlugin(And="&", Or="\\|", AndNot="&!", AndMaybe="&~", Not="\\-")
parser.replace_plugin(op)

Adding less-than, greater-than, etc.

Normally, the way you match all terms in a field greater than “apple” is with
an open ended range:

field:{apple to]

The whoosh.qparser.GtLtPlugin lets you specify the same search like
this:

field:>apple

The plugin lets you use >, <, >=, <=, =>, or =< after
a field specifier, and translates the expression into the equivalent range:

date:>='31 march 2001'

date:[31 march 2001 to]

Adding fuzzy term queries

Fuzzy queries are good for catching misspellings and similar words.
The whoosh.qparser.FuzzyTermPlugin lets you search for “fuzzy” terms,
that is, terms that don’t have to match exactly. The fuzzy term will match any
similar term within a certain number of “edits” (character insertions,
deletions, and/or transpositions – this is called the “Damerau-Levenshtein
edit distance”).

To add the fuzzy plugin:

parser = qparser.QueryParser("fieldname", my_index.schema)
parser.add_plugin(qparser.FuzzyTermPlugin())

Once you add the fuzzy plugin to the parser, you can specify a fuzzy term by
adding a ~ followed by an optional maximum edit distance. If you don’t
specify an edit distance, the default is 1.

For example, the following “fuzzy” term query:

cat~

would match cat and all terms in the index within one “edit” of cat,
for example cast (insert s), at (delete c), and act
(transpose c and a).

If you wanted cat to match bat, it requires two edits (delete c and
insert b) so you would need to set the maximum edit distance to 2:

cat~2

Because each additional edit you allow increases the number of possibilities
that must be checked, edit distances greater than 2 can be very slow.

It is often useful to require that the first few characters of a fuzzy term
match exactly. This is called a prefix. You can set the length of the prefix
by adding a slash and a number after the edit distance. For example, to use
a maximum edit distance of 2 and a prefix length of 3:

johannson~2/3

You can specify a prefix without specifying an edit distance:

johannson~/3

The default prefix distance is 0.

Allowing complex phrase queries

The default parser setup allows phrase (proximity) queries such as:

"whoosh search library"

The default phrase query tokenizes the text between the quotes and creates a
search for those terms in proximity.

If you want to do more complex proximity searches, you can replace the phrase
plugin with the whoosh.qparser.SequencePlugin, which allows any query
between the quotes. For example:

"(john OR jon OR jonathan~) peters*"

The sequence syntax lets you add a “slop” factor just like the regular phrase:

"(john OR jon OR jonathan~) peters*"~2

To replace the default phrase plugin with the sequence plugin:

parser = qparser.QueryParser("fieldname", my_index.schema)
parser.remove_plugin_class(qparser.PhrasePlugin)
parser.add_plugin(qparser.SequencePlugin())

Alternatively, you could keep the default phrase plugin and give the sequence
plugin different syntax by specifying a regular expression for the start/end
marker when you create the sequence plugin. The regular expression should have
a named group slop for the slop factor. For example:

parser = qparser.QueryParser("fieldname", my_index.schema)
parser.add_plugin(qparser.SequencePlugin("!(~(?P<slop>[1-9][0-9]*))?"))

This would allow you to use regular phrase queries and sequence queries at the
same time:

"regular phrase" AND !sequence query~2!

Advanced customization

QueryParser arguments

QueryParser supports two extra keyword arguments:

	group

	The query class to use to join sub-queries when the user doesn’t explicitly
specify a boolean operator, such as AND or OR. This lets you change
the default operator from AND to OR.

This will be the whoosh.qparser.AndGroup or
whoosh.qparser.OrGroup class (not an instantiated object) unless
you’ve written your own custom grouping syntax you want to use.

	termclass

	The query class to use to wrap single terms.

This must be a whoosh.query.Query subclass (not an instantiated
object) that accepts a fieldname string and term text unicode string in its
__init__ method. The default is whoosh.query.Term.

This is useful if you want to change the default term class to
whoosh.query.Variations, or if you’ve written a custom term class
you want the parser to use instead of the ones shipped with Whoosh.

>>> from whoosh.qparser import QueryParser, OrGroup
>>> orparser = QueryParser("content", schema=myschema, group=OrGroup)

Configuring plugins

The query parser’s functionality is provided by a set of plugins. You can
remove plugins to remove functionality, add plugins to add functionality, or
replace default plugins with re-configured or rewritten versions.

The whoosh.qparser.QueryParser.add_plugin(),
whoosh.qparser.QueryParser.remove_plugin_class(), and
whoosh.qparser.QueryParser.replace_plugin() methods let you manipulate
the plugins in a QueryParser object.

See qparser module for information about the available plugins.

Creating custom operators

	Decide whether you want a PrefixOperator, PostfixOperator, or InfixOperator.

	Create a new whoosh.qparser.syntax.GroupNode subclass to hold
nodes affected by your operator. This object is responsible for generating
a whoosh.query.Query object corresponding to the syntax.

	Create a regular expression pattern for the operator’s query syntax.

	Create an OperatorsPlugin.OpTagger object from the above information.

	Create a new OperatorsPlugin instance configured with your custom
operator(s).

	Replace the default OperatorsPlugin in your parser with your new instance.

For example, if you were creating a BEFORE operator:

from whoosh import qparser, query

optype = qparser.InfixOperator
pattern = " BEFORE "

class BeforeGroup(qparser.GroupNode):
 merging = True
 qclass = query.Ordered

Create an OpTagger for your operator:

btagger = qparser.OperatorPlugin.OpTagger(pattern, BeforeGroup,
 qparser.InfixOperator)

By default, infix operators are left-associative. To make a right-associative
infix operator, do this:

btagger = qparser.OperatorPlugin.OpTagger(pattern, BeforeGroup,
 qparser.InfixOperator,
 leftassoc=False)

Create an OperatorsPlugin instance with your
new operator, and replace the default operators plugin in your query parser:

qp = qparser.QueryParser("text", myschema)
my_op_plugin = qparser.OperatorsPlugin([(btagger, 0)])
qp.replace_plugin(my_op_plugin)

Note that the list of operators you specify with the first argument is IN
ADDITION TO the default operators (AND, OR, etc.). To turn off one of the
default operators, you can pass None to the corresponding keyword argument:

cp = qparser.OperatorsPlugin([(optagger, 0)], And=None)

If you want ONLY your list of operators and none of the default operators,
use the clean keyword argument:

cp = qparser.OperatorsPlugin([(optagger, 0)], clean=True)

Operators earlier in the list bind more closely than operators later in the
list.

The default query language

Overview

A query consists of terms and operators. There are two types of terms: single
terms and phrases. Multiple terms can be combined with operators such as
AND and OR.

Whoosh supports indexing text in different fields. You must specify the
default field when you create the whoosh.qparser.QueryParser object.
This is the field in which any terms the user does not explicitly specify a field
for will be searched.

Whoosh’s query parser is capable of parsing different and/or additional syntax
through the use of plug-ins. See Parsing user queries.

Individual terms and phrases

Find documents containing the term render:

render

Find documents containing the phrase all was well:

"all was well"

Note that a field must store Position information for phrase searching to work in
that field.

Normally when you specify a phrase, the maximum difference in position between
each word in the phrase is 1 (that is, the words must be right next to each
other in the document). For example, the following matches if a document has
library within 5 words after whoosh:

"whoosh library"~5

Boolean operators

Find documents containing render and shading:

render AND shading

Note that AND is the default relation between terms, so this is the same as:

render shading

Find documents containing render, and also either shading or
modeling:

render AND shading OR modeling

Find documents containing render but not modeling:

render NOT modeling

Find documents containing alpha but not either beta or gamma:

alpha NOT (beta OR gamma)

Note that when no boolean operator is specified between terms, the parser will
insert one, by default AND. So this query:

render shading modeling

is equivalent (by default) to:

render AND shading AND modeling

See customizing the default parser for information on how to
change the default operator to OR.

Group operators together with parentheses. For example to find documents that
contain both render and shading, or contain modeling:

(render AND shading) OR modeling

Fields

Find the term ivan in the name field:

name:ivan

The field: prefix only sets the field for the term it directly precedes, so
the query:

title:open sesame

Will search for open in the title field and sesame in the default
field.

To apply a field prefix to multiple terms, group them with parentheses:

title:(open sesame)

This is the same as:

title:open title:sesame

Of course you can specify a field for phrases too:

title:"open sesame"

Inexact terms

Use “globs” (wildcard expressions using ? to represent a single character
and * to represent any number of characters) to match terms:

te?t test* *b?g*

Note that a wildcard starting with ? or * is very slow. Note also that
these wildcards only match individual terms. For example, the query:

my*life

will not match an indexed phrase like:

my so called life

because those are four separate terms.

Ranges

You can match a range of terms. For example, the following query will match
documents containing terms in the lexical range from apple to bear
inclusive. For example, it will match documents containing azores and
be but not blur:

[apple TO bear]

This is very useful when you’ve stored, for example, dates in a lexically sorted
format (i.e. YYYYMMDD):

date:[20050101 TO 20090715]

The range is normally inclusive (that is, the range will match all terms
between the start and end term, as well as the start and end terms
themselves). You can specify that one or both ends of the range are exclusive
by using the { and/or } characters:

[0000 TO 0025}
{prefix TO suffix}

You can also specify open-ended ranges by leaving out the start or end term:

[0025 TO]
{TO suffix}

Boosting query elements

You can specify that certain parts of a query are more important for calculating
the score of a matched document than others. For example, to specify that
ninja is twice as important as other words, and bear is half as
important:

ninja^2 cowboy bear^0.5

You can apply a boost to several terms using grouping parentheses:

(open sesame)^2.5 roc

Making a term from literal text

If you need to include characters in a term that are normally treated specially
by the parser, such as spaces, colons, or brackets, you can enclose the term
in single quotes:

path:'MacHD:My Documents'
'term with spaces'
title:'function()'

Indexing and parsing dates/times

Indexing dates

Whoosh lets you index and search dates/times using the
whoosh.fields.DATETIME field type. Instead of passing text for the
field in add_document(), you use a Python datetime.datetime object:

from datetime import datetime, timedelta
from whoosh import fields, index

schema = fields.Schema(title=fields.TEXT, content=fields.TEXT,
 date=fields.DATETIME)
ix = index.create_in("indexdir", schema)

w = ix.writer()
w.add_document(title="Document 1", content="Rendering images from the command line",
 date=datetime.utcnow())
w.add_document(title="Document 2", content="Creating shaders using a node network",
 date=datetime.utcnow() + timedelta(days=1))
w.commit()

Parsing date queries

Once you’ve have an indexed DATETIME field, you can search it using a rich
date parser contained in the whoosh.qparser.dateparse.DateParserPlugin:

from whoosh import index
from whoosh.qparser import QueryParser
from whoosh.qparser.dateparse import DateParserPlugin

ix = index.open_dir("indexdir")

Instatiate a query parser
qp = QueryParser("content", ix.schema)

Add the DateParserPlugin to the parser
qp.add_plugin(DateParserPlugin())

With the DateParserPlugin, users can use date queries such as:

20050912
2005 sept 12th
june 23 1978
23 mar 2005
july 1985
sep 12
today
yesterday
tomorrow
now
next friday
last tuesday
5am
10:25:54
23:12
8 PM
4:46 am oct 31 2010
last tuesday to today
today to next friday
jan 2005 to feb 2008
-1 week to now
now to +2h
-1y6mo to +2 yrs 23d

Normally, as with other types of queries containing spaces, the users need
to quote date queries containing spaces using single quotes:

render date:'last tuesday' command
date:['last tuesday' to 'next friday']

If you use the free argument to the DateParserPlugin, the plugin will
try to parse dates from unquoted text following a date field prefix:

qp.add_plugin(DateParserPlugin(free=True))

This allows the user to type a date query with spaces and special characters
following the name of date field and a colon. The date query can be mixed
with other types of queries without quotes:

date:last tuesday
render date:oct 15th 2001 5:20am command

If you don’t use the DateParserPlugin, users can still search DATETIME
fields using a simple numeric form YYYY[MM[DD[hh[mm[ss]]]]] that is built
into the DATETIME field:

from whoosh import index
from whoosh.qparser import QueryParser

ix = index.open_dir("indexdir")
qp = QueryParser("content", schema=ix.schema)

Find all datetimes in 2005
q = qp.parse(u"date:2005")

Find all datetimes on June 24, 2005
q = qp.parse(u"date:20050624")

Find all datetimes from 1am-2am on June 24, 2005
q = qp.parse(u"date:2005062401")

Find all datetimes from Jan 1, 2005 to June 2, 2010
q = qp.parse(u"date:[20050101 to 20100602]")

About time zones and basetime

The best way to deal with time zones is to always index datetimes in native
UTC form. Any tzinfo attribute on the datetime object is ignored
by the indexer. If you are working with local datetimes, you should convert them
to native UTC datetimes before indexing.

Date parser notes

Please note that the date parser is still somewhat experimental.

Setting the base datetime

When you create the DateParserPlugin you can pass a datetime object to
the basedate argument to set the datetime against which relative queries
(such as last tuesday and -2 hours) are measured. By default, the
basedate is datetime.utcnow() at the moment the plugin is instantiated:

qp.add_plugin(DateParserPlugin(basedate=my_datetime))

Registering an error callback

To avoid user queries causing exceptions in your application, the date parser
attempts to fail silently when it can’t parse a date query. However, you can
register a callback function to be notified of parsing failures so you can
display feedback to the user. The argument to the callback function is the
date text that could not be parsed (this is an experimental feature and may
change in future versions):

errors = []
def add_error(msg):
 errors.append(msg)
qp.add_plugin(DateParserPlug(callback=add_error))

q = qp.parse(u"date:blarg")
errors == [u"blarg"]

Using free parsing

While the free option is easier for users, it may result in ambiguities.
As one example, if you want to find documents containing reference to a march
and the number 2 in documents from the year 2005, you might type:

date:2005 march 2

This query would be interpreted correctly as a date query and two term queries
when free=False, but as a single date query when free=True. In this
case the user could limit the scope of the date parser with single quotes:

date:'2005' march 2

Parsable formats

The date parser supports a wide array of date and time formats, however it is
not my intention to try to support all types of human-readable dates (for
example ten to five the friday after next). The best idea might be to pick
a date format that works and try to train users on it, and if they use one of
the other formats that also works consider it a happy accident.

Limitations

	Since it’s based on Python’s datetime.datetime object, the DATETIME
field shares all the limitations of that class, such as no support for
dates before year 1 on the proleptic Gregorian calendar. The DATETIME
field supports practically unlimited dates, so if the datetime object
is every improved it could support it. An alternative possibility might
be to add support for mxDateTime objects someday.

	The DateParserPlugin currently only has support for English dates.
The architecture supports creation of parsers for other languages, and I
hope to add examples for other languages soon.

	DATETIME fields do not currently support open-ended ranges. You can
simulate an open ended range by using an endpoint far in the past or future.

Query objects

The classes in the whoosh.query module implement queries you can run against the index.

TBD.

See How to search for how to search the index using query objects.

About analyzers

Overview

An analyzer is a function or callable class (a class with a __call__ method)
that takes a unicode string and returns a generator of tokens. Usually a “token”
is a word, for example the string “Mary had a little lamb” might yield the
tokens “Mary”, “had”, “a”, “little”, and “lamb”. However, tokens do not
necessarily correspond to words. For example, you might tokenize Chinese text
into individual characters or bi-grams. Tokens are the units of indexing, that
is, they are what you are able to look up in the index.

An analyzer is basically just a wrapper for a tokenizer and zero or more
filters. The analyzer’s __call__ method will pass its parameters to a
tokenizer, and the tokenizer will usually be wrapped in a few filters.

A tokenizer is a callable that takes a unicode string and yields a series of
analysis.Token objects.

For example, the provided whoosh.analysis.RegexTokenizer class
implements a customizable, regular-expression-based tokenizer that extracts
words and ignores whitespace and punctuation.

>>> from whoosh.analysis import RegexTokenizer
>>> tokenizer = RegexTokenizer()
>>> for token in tokenizer(u"Hello there my friend!"):
... print repr(token.text)
u'Hello'
u'there'
u'my'
u'friend'

A filter is a callable that takes a generator of Tokens (either a tokenizer or
another filter) and in turn yields a series of Tokens.

For example, the provided whoosh.analysis.LowercaseFilter() filters tokens
by converting their text to lowercase. The implementation is very simple:

def LowercaseFilter(tokens):
 """Uses lower() to lowercase token text. For example, tokens
 "This","is","a","TEST" become "this","is","a","test".
 """

 for t in tokens:
 t.text = t.text.lower()
 yield t

You can wrap the filter around a tokenizer to see it in operation:

>>> from whoosh.analysis import LowercaseFilter
>>> for token in LowercaseFilter(tokenizer(u"These ARE the things I want!")):
... print repr(token.text)
u'these'
u'are'
u'the'
u'things'
u'i'
u'want'

An analyzer is just a means of combining a tokenizer and some filters into a
single package.

You can implement an analyzer as a custom class or function, or compose
tokenizers and filters together using the | character:

my_analyzer = RegexTokenizer() | LowercaseFilter() | StopFilter()

The first item must be a tokenizer and the rest must be filters (you can’t put a
filter first or a tokenizer after the first item). Note that this only works if at
least the tokenizer is a subclass of whoosh.analysis.Composable, as all the
tokenizers and filters that ship with Whoosh are.

See the whoosh.analysis module for information on the available analyzers,
tokenizers, and filters shipped with Whoosh.

Using analyzers

When you create a field in a schema, you can specify your analyzer as a keyword
argument to the field object:

schema = Schema(content=TEXT(analyzer=StemmingAnalyzer()))

Advanced Analysis

Token objects

The Token class has no methods. It is merely a place to record certain
attributes. A Token object actually has two kinds of attributes: settings
that record what kind of information the Token object does or should contain,
and information about the current token.

Token setting attributes

A Token object should always have the following attributes. A tokenizer or
filter can check these attributes to see what kind of information is available
and/or what kind of information they should be setting on the Token object.

These attributes are set by the tokenizer when it creates the Token(s), based on
the parameters passed to it from the Analyzer.

Filters should not change the values of these attributes.

	Type
	Attribute name
	Description
	Default

	str
	mode
	The mode in which the analyzer is being called,
e.g. ‘index’ during indexing or ‘query’ during
query parsing
	‘’

	bool
	positions
	Whether term positions are recorded in the token
	False

	bool
	chars
	Whether term start and end character indices are
recorded in the token
	False

	bool
	boosts
	Whether per-term boosts are recorded in the token
	False

	bool
	removestops
	Whether stop-words should be removed from the
token stream
	True

Token information attributes

A Token object may have any of the following attributes. The text attribute
should always be present. The original attribute may be set by a tokenizer. All
other attributes should only be accessed or set based on the values of the
“settings” attributes above.

	Type
	Name
	Description

	unicode
	text
	The text of the token (this should always be present)

	unicode
	original
	The original (pre-filtered) text of the token. The tokenizer may
record this, and filters are expected not to modify it.

	int
	pos
	The position of the token in the stream, starting at 0
(only set if positions is True)

	int
	startchar
	The character index of the start of the token in the original
string (only set if chars is True)

	int
	endchar
	The character index of the end of the token in the original
string (only set if chars is True)

	float
	boost
	The boost for this token (only set if boosts is True)

	bool
	stopped
	Whether this token is a “stop” word
(only set if removestops is False)

So why are most of the information attributes optional? Different field formats
require different levels of information about each token. For example, the
Frequency format only needs the token text. The Positions format records term
positions, so it needs them on the Token. The Characters format records term
positions and the start and end character indices of each term, so it needs them
on the token, and so on.

The Format object that represents the format of each field calls the analyzer
for the field, and passes it parameters corresponding to the types of
information it needs, e.g.:

analyzer(unicode_string, positions=True)

The analyzer can then pass that information to a tokenizer so the tokenizer
initializes the required attributes on the Token object(s) it produces.

Performing different analysis for indexing and query parsing

Whoosh sets the mode setting attribute to indicate whether the analyzer is
being called by the indexer (mode='index') or the query parser
(mode='query'). This is useful if there’s a transformation that you only
want to apply at indexing or query parsing:

class MyFilter(Filter):
 def __call__(self, tokens):
 for t in tokens:
 if t.mode == 'query':
 ...
 else:
 ...

The whoosh.analysis.MultiFilter filter class lets you specify different
filters to use based on the mode setting:

intraword = MultiFilter(index=IntraWordFilter(mergewords=True, mergenums=True),
 query=IntraWordFilter(mergewords=False, mergenums=False))

Stop words

“Stop” words are words that are so common it’s often counter-productive to index
them, such as “and”, “or”, “if”, etc. The provided analysis.StopFilter lets you
filter out stop words, and includes a default list of common stop words.

>>> from whoosh.analysis import StopFilter
>>> stopper = StopFilter()
>>> for token in stopper(LowercaseFilter(tokenizer(u"These ARE the things I want!"))):
... print repr(token.text)
u'these'
u'things'
u'want'

However, this seemingly simple filter idea raises a couple of minor but slightly
thorny issues: renumbering term positions and keeping or removing stopped words.

Renumbering term positions

Remember that analyzers are sometimes asked to record the position of each token
in the token stream:

	Token.text
	u’Mary’
	u’had’
	u’a’
	u’lamb’

	Token.pos
	0
	1
	2
	3

So what happens to the pos attribute of the tokens if StopFilter removes
the words had and a from the stream? Should it renumber the positions to
pretend the “stopped” words never existed? I.e.:

	Token.text
	u’Mary’
	u’lamb’

	Token.pos
	0
	1

or should it preserve the original positions of the words? I.e:

	Token.text
	u’Mary’
	u’lamb’

	Token.pos
	0
	3

It turns out that different situations call for different solutions, so the
provided StopFilter class supports both of the above behaviors. Renumbering
is the default, since that is usually the most useful and is necessary to
support phrase searching. However, you can set a parameter in StopFilter’s
constructor to tell it not to renumber positions:

stopper = StopFilter(renumber=False)

Removing or leaving stop words

The point of using StopFilter is to remove stop words, right? Well, there
are actually some situations where you might want to mark tokens as “stopped”
but not remove them from the token stream.

For example, if you were writing your own query parser, you could run the user’s
query through a field’s analyzer to break it into tokens. In that case, you
might want to know which words were “stopped” so you can provide helpful
feedback to the end user (e.g. “The following words are too common to search
for:”).

In other cases, you might want to leave stopped words in the stream for certain
filtering steps (for example, you might have a step that looks at previous
tokens, and want the stopped tokens to be part of the process), but then remove
them later.

The analysis module provides a couple of tools for keeping and removing
stop-words in the stream.

The removestops parameter passed to the analyzer’s __call__ method (and
copied to the Token object as an attribute) specifies whether stop words should
be removed from the stream or left in.

>>> from whoosh.analysis import StandardAnalyzer
>>> analyzer = StandardAnalyzer()
>>> [(t.text, t.stopped) for t in analyzer(u"This is a test")]
[(u'test', False)]
>>> [(t.text, t.stopped) for t in analyzer(u"This is a test", removestops=False)]
[(u'this', True), (u'is', True), (u'a', True), (u'test', False)]

The analysis.unstopped() filter function takes a token generator and yields
only the tokens whose stopped attribute is False.

Note

Even if you leave stopped words in the stream in an analyzer you use for
indexing, the indexer will ignore any tokens where the stopped
attribute is True.

Implementation notes

Because object creation is slow in Python, the stock tokenizers do not create a
new analysis.Token object for each token. Instead, they create one Token object
and yield it over and over. This is a nice performance shortcut but can lead to
strange behavior if your code tries to remember tokens between loops of the
generator.

Because the analyzer only has one Token object, of which it keeps changing the
attributes, if you keep a copy of the Token you get from a loop of the
generator, it will be changed from under you. For example:

>>> list(tokenizer(u"Hello there my friend"))
[Token(u"friend"), Token(u"friend"), Token(u"friend"), Token(u"friend")]

Instead, do this:

>>> [t.text for t in tokenizer(u"Hello there my friend")]

That is, save the attributes, not the token object itself.

If you implement your own tokenizer, filter, or analyzer as a class, you should
implement an __eq__ method. This is important to allow comparison of Schema
objects.

The mixing of persistent “setting” and transient “information” attributes on the
Token object is not especially elegant. If I ever have a better idea I might
change it. ;) Nothing requires that an Analyzer be implemented by calling a
tokenizer and filters. Tokenizers and filters are simply a convenient way to
structure the code. You’re free to write an analyzer any way you want, as long
as it implements __call__.

Stemming, variations, and accent folding

The problem

The indexed text will often contain words in different form than the one
the user searches for. For example, if the user searches for render, we
would like the search to match not only documents that contain the render,
but also renders, rendering, rendered, etc.

A related problem is one of accents. Names and loan words may contain accents in
the original text but not in the user’s query, or vice versa. For example, we
want the user to be able to search for cafe and find documents containing
café.

The default analyzer for the whoosh.fields.TEXT field does not do
stemming or accent folding.

Stemming

Stemming is a heuristic process of removing suffixes (and sometimes prefixes)
from words to arrive (hopefully, most of the time) at the base word. Whoosh
includes several stemming algorithms such as Porter and Porter2, Paice Husk,
and Lovins.

>>> from whoosh.lang.porter import stem
>>> stem("rendering")
'render'

The stemming filter applies the stemming function to the terms it indexes, and
to words in user queries. So in theory all variations of a root word (“render”,
“rendered”, “renders”, “rendering”, etc.) are reduced to a single term in the
index, saving space. And all possible variations users might use in a query
are reduced to the root, so stemming enhances “recall”.

The whoosh.analysis.StemFilter lets you add a stemming filter to an
analyzer chain.

>>> rext = RegexTokenizer()
>>> stream = rext(u"fundamentally willows")
>>> stemmer = StemFilter()
>>> [token.text for token in stemmer(stream)]
[u"fundament", u"willow"]

The whoosh.analysis.StemmingAnalyzer() is a pre-packaged analyzer that
combines a tokenizer, lower-case filter, optional stop filter, and stem filter:

from whoosh import fields
from whoosh.analysis import StemmingAnalyzer

stem_ana = StemmingAnalyzer()
schema = fields.Schema(title=TEXT(analyzer=stem_ana, stored=True),
 content=TEXT(analyzer=stem_ana))

Stemming has pros and cons.

	It allows the user to find documents without worrying about word forms.

	It reduces the size of the index, since it reduces the number of separate
terms indexed by “collapsing” multiple word forms into a single base word.

	It’s faster than using variations (see below)

	The stemming algorithm can sometimes incorrectly conflate words or change
the meaning of a word by removing suffixes.

	The stemmed forms are often not proper words, so the terms in the field
are not useful for things like creating a spelling dictionary.

Variations

Whereas stemming encodes the words in the index in a base form, when you use
variations you instead index words “as is” and at query time expand words
in the user query using a heuristic algorithm to generate morphological
variations of the word.

>>> from whoosh.lang.morph_en import variations
>>> variations("rendered")
set(['rendered', 'rendernesses', 'render', 'renderless', 'rendering',
'renderness', 'renderes', 'renderer', 'renderements', 'rendereless',
'renderenesses', 'rendere', 'renderment', 'renderest', 'renderement',
'rendereful', 'renderers', 'renderful', 'renderings', 'renders', 'renderly',
'renderely', 'rendereness', 'renderments'])

Many of the generated variations for a given word will not be valid words, but
it’s fairly fast for Whoosh to check which variations are actually in the
index and only search for those.

The whoosh.query.Variations query object lets you search for variations
of a word. Whereas the normal whoosh.query.Term object only searches
for the given term, the Variations query acts like an Or query for the
variations of the given word in the index. For example, the query:

query.Variations("content", "rendered")

...might act like this (depending on what words are in the index):

query.Or([query.Term("content", "render"), query.Term("content", "rendered"),
 query.Term("content", "renders"), query.Term("content", "rendering")])

To have the query parser use whoosh.query.Variations instead of
whoosh.query.Term for individual terms, use the termclass
keyword argument to the parser initialization method:

from whoosh import qparser, query

qp = qparser.QueryParser("content", termclass=query.Variations)

Variations has pros and cons.

	It allows the user to find documents without worrying about word forms.

	The terms in the field are actual words, not stems, so you can use the
field’s contents for other purposes such as spell checking queries.

	It increases the size of the index relative to stemming, because different
word forms are indexed separately.

	It acts like an Or search for all the variations, which is slower than
searching for a single term.

Lemmatization

Whereas stemming is a somewhat “brute force”, mechanical attempt at reducing
words to their base form using simple rules, lemmatization usually refers to
more sophisticated methods of finding the base form (“lemma”) of a word using
language models, often involving analysis of the surrounding context and
part-of-speech tagging.

Whoosh does not include any lemmatization functions, but if you have separate
lemmatizing code you could write a custom whoosh.analysis.Filter
to integrate it into a Whoosh analyzer.

Character folding

You can set up an analyzer to treat, for example, á, a, å, and â
as equivalent to improve recall. This is often very useful, allowing the user
to, for example, type cafe or resume and find documents containing
café and resumé.

Character folding is especially useful for unicode characters that may appear
in Asian language texts that should be treated as equivalent to their ASCII
equivalent, such as “half-width” characters.

Character folding is not always a panacea. See this article for caveats on where
accent folding can break down.

http://www.alistapart.com/articles/accent-folding-for-auto-complete/

Whoosh includes several mechanisms for adding character folding to an analyzer.

The whoosh.analysis.CharsetFilter applies a character map to token
text. For example, it will filter the tokens u'café', u'resumé', ... to
u'cafe', u'resume', This is usually the method you’ll want to use
unless you need to use a charset to tokenize terms:

from whoosh.analysis import CharsetFilter, StemmingAnalyzer
from whoosh import fields
from whoosh.support.charset import accent_map

For example, to add an accent-folding filter to a stemming analyzer:
my_analyzer = StemmingAnalyzer() | CharsetFilter(accent_map)

To use this analyzer in your schema:
my_schema = fields.Schema(content=fields.TEXT(analyzer=my_analyzer))

The whoosh.analysis.CharsetTokenizer uses a Sphinx charset table to
both separate terms and perform character folding. This tokenizer is slower
than the whoosh.analysis.RegexTokenizer because it loops over each
character in Python. If the language(s) you’re indexing can be tokenized using
regular expressions, it will be much faster to use RegexTokenizer and
CharsetFilter in combination instead of using CharsetTokenizer.

The whoosh.support.charset module contains an accent folding map useful
for most Western languages, as well as a much more extensive Sphinx charset
table and a function to convert Sphinx charset tables into the character maps
required by CharsetTokenizer and CharsetFilter:

To create a filter using an enourmous character map for most languages
generated from a Sphinx charset table
from whoosh.analysis import CharsetFilter
from whoosh.support.charset import default_charset, charset_table_to_dict
charmap = charset_table_to_dict(default_charset)
my_analyzer = StemmingAnalyzer() | CharsetFilter(charmap)

(The Sphinx charset table format is described at
http://www.sphinxsearch.com/docs/current.html#conf-charset-table)

Indexing and searching N-grams

Overview

N-gram indexing is a powerful method for getting fast, “search as you type”
functionality like iTunes. It is also useful for quick and effective indexing
of languages such as Chinese and Japanese without word breaks.

N-grams refers to groups of N characters... bigrams are groups of two
characters, trigrams are groups of three characters, and so on.

Whoosh includes two methods for analyzing N-gram fields: an N-gram tokenizer,
and a filter that breaks tokens into N-grams.

whoosh.analysis.NgramTokenizer tokenizes the entire field into N-grams.
This is more useful for Chinese/Japanese/Korean languages, where it’s useful
to index bigrams of characters rather than individual characters. Using this
tokenizer with roman languages leads to spaces in the tokens.

>>> ngt = NgramTokenizer(minsize=2, maxsize=4)
>>> [token.text for token in ngt(u"hi there")]
[u'hi', u'hi ', u'hi t',u'i ', u'i t', u'i th', u' t', u' th', u' the', u'th',
u'the', u'ther', u'he', u'her', u'here', u'er', u'ere', u're']

whoosh.analysis.NgramFilter breaks individual tokens into N-grams as
part of an analysis pipeline. This is more useful for languages with word
separation.

>>> my_analyzer = StandardAnalyzer() | NgramFilter(minsize=2, maxsize=4)
>>> [token.text for token in my_analyzer(u"rendering shaders")]
[u'ren', u'rend', u'end', u'ende', u'nde', u'nder', u'der', u'deri', u'eri',
u'erin', u'rin', u'ring', u'ing', u'sha', u'shad', u'had', u'hade', u'ade',
u'ader', u'der', u'ders', u'ers']

Whoosh includes two pre-configured field types for N-grams:
whoosh.fields.NGRAM and whoosh.fields.NGRAMWORDS. The only
difference is that NGRAM runs all text through the N-gram filter, including
whitespace and punctuation, while NGRAMWORDS extracts words from the text
using a tokenizer, then runs each word through the N-gram filter.

TBD.

Sorting and faceting

Note

The API for sorting and faceting changed in Whoosh 3.0.

Overview

Sorting and faceting search results in Whoosh is based on facets. Each
facet associates a value with each document in the search results, allowing you
to sort by the keys or use them to group the documents. Whoosh includes a variety
of facet types you can use for sorting and grouping (see below).

Sorting

By default, the results of a search are sorted with the highest-scoring
documents first. You can use the sortedby keyword argument to order the
results by some other criteria instead, such as the value of a field.

Making fields sortable

In order to sort on a field, you should create the field using the
sortable=True keyword argument:

schema = fields.Schema(title=fields.TEXT(sortable=True),
 content=fields.TEXT,
 modified=fields.DATETIME(sortable=True)
)

It’s possible to sort on a field that doesn’t have sortable=True, but this
requires Whoosh to load the unique terms in the field into memory. Using
sortable is much more efficient.

About column types

When you create a field using sortable=True, you are telling Whoosh to store
per-document values for that field in a column. A column object specifies the
format to use to store the per-document values on disk.

The whoosh.columns module contains several different column object
implementations. Each field type specifies a reasonable default column type (for
example, the default for text fields is whoosh.columns.VarBytesColumn,
the default for numeric fields is whoosh.columns.NumericColumn).
However, if you want maximum efficiency you may want to use a different column
type for a field.

For example, if all document values in a field are a fixed length, you can use a
whoosh.columns.FixedBytesColumn. If you have a field where many
documents share a relatively small number of possible values (an example might
be a “category” field, or “month” or other enumeration type fields), you might
want to use whoosh.columns.RefBytesColumn (which can handle both
variable and fixed-length values). There are column types for storing
per-document bit values, structs, pickled objects, and compressed byte values.

To specify a custom column object for a field, pass it as the sortable
keyword argument instead of True:

from whoosh import columns, fields

category_col = columns.RefBytesColumn()
schema = fields.Schema(title=fields.TEXT(sortable=True),
 category=fields.KEYWORD(sortable=category_col)

Using a COLUMN field for custom sort keys

When you add a document with a sortable field, Whoosh uses the value you pass
for the field as the sortable value. For example, if “title” is a sortable
field, and you add this document:

writer.add_document(title="Mr. Palomar")

...then Mr. Palomar is stored in the field column as the sorting key for the
document.

This is usually good, but sometimes you need to “massage” the sortable key so
it’s different from the value the user searches and/or sees in the interface.
For example, if you allow the user to sort by title, you might want to use
different values for the visible title and the value used for sorting:

Visible title
title = "The Unbearable Lightness of Being"

Sortable title: converted to lowercase (to prevent different ordering
depending on uppercase/lowercase), with initial article moved to the end
sort_title = "unbearable lightness of being, the"

The best way to do this is to use an additional field just for sorting. You can
use the whoosh.fields.COLUMN field type to create a field that is not
indexed or stored, it only holds per-document column values:

schema = fields.Schema(title=fields.TEXT(stored=True),
 sort_title=fields.COLUMN(columns.VarBytesColumn())
)

The single argument to the whoosh.fields.COLUMN initializer is a
whoosh.columns.ColumnType object. You can use any of the various
column types in the whoosh.columns module.

As another example, say you are indexing documents that have a custom sorting
order associated with each document, such as a “priority” number:

name=Big Wheel
price=100
priority=1

name=Toss Across
price=40
priority=3

name=Slinky
price=25
priority=2
...

You can use a column field with a numeric column object to hold the “priority”
and use it for sorting:

schema = fields.Schema(name=fields.TEXT(stored=True),
 price=fields.NUMERIC(stored=True),
 priority=fields.COLUMN(columns.NumericColumn("i"),
)

(Note that columns.NumericColumn takes a type code character like the
codes used by Python’s struct and array modules.)

Making existing fields sortable

If you have an existing index from before the sortable argument was added
in Whoosh 3.0, or you didn’t think you needed a field to be sortable but now
you find that you need to sort it, you can add “sortability” to an existing
index using the whoosh.sorting.add_sortable() utility function:

from whoosh import columns, fields, index, sorting

Say we have an existing index with this schema
schema = fields.Schema(title=fields.TEXT,
 price=fields.NUMERIC)

To use add_sortable, first open a writer for the index
ix = index.open_dir("indexdir")
with ix.writer() as w:
 # Add sortable=True to the "price" field using field terms as the
 # sortable values
 sorting.add_sortable(w, "price", sorting.FieldFacet("price"))

 # Add sortable=True to the "title" field using the
 # stored field values as the sortable value
 sorting.add_sortable(w, "title", sorting.StoredFieldFacet("title"))

You can specify a custom column type when you call add_sortable using the
column keyword argument:

add_sortable(w, "chapter", sorting.FieldFacet("chapter"),
 column=columns.RefBytesColumn())

See the documentation for add_sortable() for more
information.

Sorting search results

When you tell Whoosh to sort by a field (or fields), it uses the per-document
values in the field’s column as sorting keys for the documents.

Normally search results are sorted by descending relevance score. You can tell
Whoosh to use a different ordering by passing the sortedby keyword argument
to the search() method:

from whoosh import fields, index, qparser

schema = fields.Schema(title=fields.TEXT(stored=True),
 price=fields.NUMERIC(sortable=True))
ix = index.create_in("indexdir", schema)

with ix.writer() as w:
 w.add_document(title="Big Deal", price=20)
 w.add_document(title="Mr. Big", price=10)
 w.add_document(title="Big Top", price=15)

with ix.searcher() as s:
 qp = qparser.QueryParser("big", ix.schema)
 q = qp.parse(user_query_string)

 # Sort search results from lowest to highest price
 results = s.search(q, sortedby="price")
 for hit in results:
 print(hit["title"])

You can use any of the following objects as sortedby values:

	A FacetType object

	Uses this object to sort the documents. See below for the available facet
types.

	A field name string

	Converts the field name into a FieldFacet (see below) and uses it to
sort the documents.

	A list of FacetType objects and/or field name strings

	Bundles the facets together into a MultiFacet so you can sort by
multiple keys. Note that this shortcut does not allow you to reverse
the sort direction of individual facets. To do that, you need to construct
the MultiFacet object yourself.

Note

You can use the reverse=True keyword argument to the
Searcher.search() method to reverse the overall sort direction. This
is more efficient than reversing each individual facet.

Examples

Sort by the value of the size field:

results = searcher.search(myquery, sortedby="size")

Sort by the reverse (highest-to-lowest) order of the “price” field:

facet = sorting.FieldFacet("price", reverse=True)
results = searcher.search(myquery, sortedby=facet)

Sort by ascending size and then descending price:

mf = sorting.MultiFacet()
mf.add_field("size")
mf.add_field("price", reverse=True)
results = searcher.search(myquery, sortedby=mf)

or...
sizes = sorting.FieldFacet("size")
prices = sorting.FieldFacet("price", reverse=True)
results = searcher.search(myquery, sortedby=[sizes, prices])

Sort by the “category” field, then by the document’s score:

cats = sorting.FieldFacet("category")
scores = sorting.ScoreFacet()
results = searcher.search(myquery, sortedby=[cats, scores])

Accessing column values

Per-document column values are available in Hit
objects just like stored field values:

schema = fields.Schema(title=fields.TEXT(stored=True),
 price=fields.NUMERIC(sortable=True))

...

results = searcher.search(myquery)
for hit in results:
 print(hit["title"], hit["price"])

ADVANCED: if you want to access abitrary per-document values quickly you can get
a column reader object:

with ix.searcher() as s:
 reader = s.reader()

 colreader = s.reader().column_reader("price")
 for docnum in reader.all_doc_ids():
 print(colreader[docnum])

Grouping

It is often very useful to present “faceted” search results to the user.
Faceting is dynamic grouping of search results into categories. The
categories let users view a slice of the total results based on the categories
they’re interested in.

For example, if you are programming a shopping website, you might want to
display categories with the search results such as the manufacturers and price
ranges.

	Manufacturer
	Price

	Apple (5)
	$0 - $100 (2)

	Sanyo (1)
	$101 - $500 (10)

	Sony (2)
	$501 - $1000 (1)

	Toshiba (5)
	

You can let your users click the different facet values to only show results
in the given categories.

Another useful UI pattern is to show, say, the top 5 results for different
types of found documents, and let the user click to see more results from a
category they’re interested in, similarly to how the Spotlight quick results
work on Mac OS X.

The groupedby keyword argument

You can use the following objects as groupedby values:

	A FacetType object

	Uses this object to group the documents. See below for the available facet
types.

	A field name string

	Converts the field name into a FieldFacet (see below) and uses it to
sort the documents. The name of the field is used as the facet name.

	A list or tuple of field name strings

	Sets up multiple field grouping criteria.

	A dictionary mapping facet names to FacetType objects

	Sets up multiple grouping criteria.

	A Facets object

	This object is a lot like using a dictionary, but has some convenience
methods to make setting up multiple groupings a little easier.

Examples

Group by the value of the “category” field:

results = searcher.search(myquery, groupedby="category")

Group by the value of the “category” field and also by the value of the “tags”
field and a date range:

cats = sorting.FieldFacet("category")
tags = sorting.FieldFacet("tags", allow_overlap=True)
results = searcher.search(myquery, groupedby={"category": cats, "tags": tags})

...or, using a Facets object has a little less duplication
facets = sorting.Facets()
facets.add_field("category")
facets.add_field("tags", allow_overlap=True)
results = searcher.search(myquery, groupedby=facets)

To group results by the intersected values of multiple fields, use a
MultiFacet object (see below). For example, if you have two fields named
tag and size, you could group the results by all combinations of the
tag and size field, such as ('tag1', 'small'),
('tag2', 'small'), ('tag1', 'medium'), and so on:

Generate a grouping from the combination of the "tag" and "size" fields
mf = MultiFacet(["tag", "size"])
results = searcher.search(myquery, groupedby={"tag/size": mf})

Getting the faceted groups

The Results.groups("facetname") method returns a dictionary mapping
category names to lists of document IDs:

myfacets = sorting.Facets().add_field("size").add_field("tag")
results = mysearcher.search(myquery, groupedby=myfacets)
results.groups("size")
{"small": [8, 5, 1, 2, 4], "medium": [3, 0, 6], "large": [7, 9]}

If there is only one facet, you can just use Results.groups() with no
argument to access its groups:

results = mysearcher.search(myquery, groupedby=myfunctionfacet)
results.groups()

By default, the values in the dictionary returned by groups() are lists of
document numbers in the same relative order as in the results. You can use the
Searcher object’s stored_fields() method to take a document number and
return the document’s stored fields as a dictionary:

for category_name in categories:
 print "Top 5 documents in the %s category" % category_name
 doclist = categories[category_name]
 for docnum, score in doclist[:5]:
 print " ", searcher.stored_fields(docnum)
 if len(doclist) > 5:
 print " (%s more)" % (len(doclist) - 5)

If you want different information about the groups, for example just the count
of documents in each group, or you don’t need the groups to be ordered, you can
specify a whoosh.sorting.FacetMap type or instance with the
maptype keyword argument when creating the FacetType:

This is the same as the default
myfacet = FieldFacet("size", maptype=sorting.OrderedList)
results = mysearcher.search(myquery, groupedby=myfacet)
results.groups()
{"small": [8, 5, 1, 2, 4], "medium": [3, 0, 6], "large": [7, 9]}

Don't sort the groups to match the order of documents in the results
(faster)
myfacet = FieldFacet("size", maptype=sorting.UnorderedList)
results = mysearcher.search(myquery, groupedby=myfacet)
results.groups()
{"small": [1, 2, 4, 5, 8], "medium": [0, 3, 6], "large": [7, 9]}

Only count the documents in each group
myfacet = FieldFacet("size", maptype=sorting.Count)
results = mysearcher.search(myquery, groupedby=myfacet)
results.groups()
{"small": 5, "medium": 3, "large": 2}

Only remember the "best" document in each group
myfacet = FieldFacet("size", maptype=sorting.Best)
results = mysearcher.search(myquery, groupedby=myfacet)
results.groups()
{"small": 8, "medium": 3, "large": 7}

Alternatively you can specify a maptype argument in the
Searcher.search() method call which applies to all facets:

results = mysearcher.search(myquery, groupedby=["size", "tag"],
 maptype=sorting.Count)

(You can override this overall maptype argument on individual facets by
specifying the maptype argument for them as well.)

Facet types

FieldFacet

This is the most common facet type. It sorts or groups based on the
value in a certain field in each document. This generally works best
(or at all) if each document has only one term in the field (e.g. an ID
field):

Sort search results by the value of the "path" field
facet = sorting.FieldFacet("path")
results = searcher.search(myquery, sortedby=facet)

Group search results by the value of the "parent" field
facet = sorting.FieldFacet("parent")
results = searcher.search(myquery, groupedby=facet)
parent_groups = results.groups("parent")

By default, FieldFacet only supports non-overlapping grouping, where a
document cannot belong to multiple facets at the same time (each document will
be sorted into one category arbitrarily.) To get overlapping groups with
multi-valued fields, use the allow_overlap=True keyword argument:

facet = sorting.FieldFacet(fieldname, allow_overlap=True)

This supports overlapping group membership where documents have more than one
term in a field (e.g. KEYWORD fields). If you don’t need overlapping, don’t
use allow_overlap because it’s much slower and uses more memory (see
the secion on allow_overlap below).

QueryFacet

You can set up categories defined by arbitrary queries. For example, you can
group names using prefix queries:

Use queries to define each category
(Here I'll assume "price" is a NUMERIC field, so I'll use
NumericRange)
qdict = {}
qdict["A-D"] = query.TermRange("name", "a", "d")
qdict["E-H"] = query.TermRange("name", "e", "h")
qdict["I-L"] = query.TermRange("name", "i", "l")
...

qfacet = sorting.QueryFacet(qdict)
r = searcher.search(myquery, groupedby={"firstltr": qfacet})

By default, QueryFacet only supports non-overlapping grouping, where a
document cannot belong to multiple facets at the same time (each document will
be sorted into one category arbitrarily). To get overlapping groups with
multi-valued fields, use the allow_overlap=True keyword argument:

facet = sorting.QueryFacet(querydict, allow_overlap=True)

RangeFacet

The RangeFacet is for NUMERIC field types. It divides a range of possible
values into groups. For example, to group documents based on price into
buckets $100 “wide”:

pricefacet = sorting.RangeFacet("price", 0, 1000, 100)

The first argument is the name of the field. The next two arguments are the
full range to be divided. Value outside this range (in this example, values
below 0 and above 1000) will be sorted into the “missing” (None) group. The
fourth argument is the “gap size”, the size of the divisions in the range.

The “gap” can be a list instead of a single value. In that case, the values in
the list will be used to set the size of the initial divisions, with the last
value in the list being the size for all subsequent divisions. For example:

pricefacet = sorting.RangeFacet("price", 0, 1000, [5, 10, 35, 50])

...will set up divisions of 0-5, 5-15, 15-50, 50-100, and then use 50 as the
size for all subsequent divisions (i.e. 100-150, 150-200, and so on).

The hardend keyword argument controls whether the last division is clamped
to the end of the range or allowed to go past the end of the range. For
example, this:

facet = sorting.RangeFacet("num", 0, 10, 4, hardend=False)

...gives divisions 0-4, 4-8, and 8-12, while this:

facet = sorting.RangeFacet("num", 0, 10, 4, hardend=True)

...gives divisions 0-4, 4-8, and 8-10. (The default is hardend=False.)

Note

The ranges/buckets are always inclusive at the start and exclusive
at the end.

DateRangeFacet

This is like RangeFacet but for DATETIME fields. The start and end values
must be datetime.datetime objects, and the gap(s) is/are
datetime.timedelta objects.

For example:

from datetime import datetime, timedelta

start = datetime(2000, 1, 1)
end = datetime.now()
gap = timedelta(days=365)
bdayfacet = sorting.DateRangeFacet("birthday", start, end, gap)

As with RangeFacet, you can use a list of gaps and the hardend keyword
argument.

ScoreFacet

This facet is sometimes useful for sorting.

For example, to sort by the “category” field, then for documents with the same
category, sort by the document’s score:

cats = sorting.FieldFacet("category")
scores = sorting.ScoreFacet()
results = searcher.search(myquery, sortedby=[cats, scores])

The ScoreFacet always sorts higher scores before lower scores.

Note

While using sortedby=ScoreFacet() should give the same results as using
the default scored ordering (sortedby=None), using the facet will be
slower because Whoosh automatically turns off many optimizations when
sorting.

FunctionFacet

This facet lets you pass a custom function to compute the sorting/grouping key
for documents. (Using this facet type may be easier than subclassing FacetType
and Categorizer to set up some custom behavior.)

The function will be called with the index searcher and index document ID as
arguments. For example, if you have an index with term vectors:

schema = fields.Schema(id=fields.STORED,
 text=fields.TEXT(stored=True, vector=True))
ix = RamStorage().create_index(schema)

...you could use a function to sort documents higher the closer they are to
having equal occurances of two terms:

def fn(searcher, docnum):
 v = dict(searcher.vector_as("frequency", docnum, "text"))
 # Sort documents that have equal number of "alfa" and "bravo" first
 return 0 - (1.0 / (abs(v.get("alfa", 0) - v.get("bravo", 0)) + 1.0))

facet = sorting.FunctionFacet(fn)
results = searcher.search(myquery, sortedby=facet)

StoredFieldFacet

This facet lets you use stored field values as the sorting/grouping key for
documents. This is usually slower than using an indexed field, but when using
allow_overlap it can actually be faster for large indexes just because it
avoids the overhead of reading posting lists.

StoredFieldFacet supports allow_overlap by
splitting the stored value into separate keys. By default it calls the value’s
split() method (since most stored values are strings), but you can supply
a custom split function. See the section on allow_overlap below.

MultiFacet

This facet type returns a composite of the keys returned by two or more
sub-facets, allowing you to sort/group by the intersected values of multiple
facets.

MultiFacet has methods for adding facets:

myfacet = sorting.RangeFacet(0, 1000, 10)

mf = sorting.MultiFacet()
mf.add_field("category")
mf.add_field("price", reverse=True)
mf.add_facet(myfacet)
mf.add_score()

You can also pass a list of field names and/or FacetType objects to the
initializer:

prices = sorting.FieldFacet("price", reverse=True)
scores = sorting.ScoreFacet()
mf = sorting.MultiFacet(["category", prices, myfacet, scores])

Missing values

	When sorting, documents without any terms in a given field, or whatever else
constitutes “missing” for different facet types, will always sort to the end.

	When grouping, “missing” documents will appear in a group with the
key None.

Using overlapping groups

The common supported workflow for grouping and sorting is where the given field
has one value for document, for example a path field containing the file
path of the original document. By default, facets are set up to support this
single-value approach.

Of course, there are situations where you want documents to be sorted into
multiple groups based on a field with multiple terms per document. The most
common example would be a tags field. The allow_overlap keyword
argument to the FieldFacet,
QueryFacet, and
StoredFieldFacet allows this multi-value approach.

However, there is an important caveat: using allow_overlap=True is slower
than the default, potentially much slower for very large result sets. This is
because Whoosh must read every posting of every term in the field to
create a temporary “forward index” mapping documents to terms.

If a field is indexed with term vectors, FieldFacet will use them to
speed up allow_overlap faceting for small result sets, but for large result
sets, where Whoosh has to open the vector list for every matched document, this
can still be very slow.

For very large indexes and result sets, if a field is stored, you can get
faster overlapped faceting using StoredFieldFacet
instead of FieldFacet. While reading stored values is usually slower than
using the index, in this case avoiding the overhead of opening large numbers of
posting readers can make it worthwhile.

StoredFieldFacet supports allow_overlap by loading the stored value for
the given field and splitting it into multiple values. The default is to call
the value’s split() method.

For example, if you’ve stored the tags field as a string like
"tag1 tag2 tag3":

schema = fields.Schema(name=fields.TEXT(stored=True),
 tags=fields.KEYWORD(stored=True))
ix = index.create_in("indexdir")
with ix.writer() as w:
 w.add_document(name="A Midsummer Night's Dream", tags="comedy fairies")
 w.add_document(name="Hamlet", tags="tragedy denmark")
 # etc.

...Then you can use a StoredFieldFacet like this:

ix = index.open_dir("indexdir")
with ix.searcher() as s:
 sff = sorting.StoredFieldFacet("tags", allow_overlap=True)
 results = s.search(myquery, groupedby={"tags": sff})

For stored Python objects other than strings, you can supply a split function
(using the split_fn keyword argument to StoredFieldFacet). The function
should accept a single argument (the stored value) and return a list or tuple
of grouping keys.

Using a custom sort order

It is sometimes useful to have a custom sort order per-search. For example,
different languages use different sort orders. If you have a function to return
the sorting order you want for a given field value, such as an implementation of
the Unicode Collation Algorithm (UCA), you can customize the sort order
for the user’s language.

The whoosh.sorting.TranslateFacet lets you apply a function to the
value of another facet. This lets you “translate” a field value into an
arbitrary sort key, such as with UCA:

from pyuca import Collator

The Collator object has a sort_key() method which takes a unicode
string and returns a sort key
c = Collator("allkeys.txt")

Make a facet object for the field you want to sort on
nf = sorting.FieldFacet("name")

Wrap the facet in a TranslateFacet with the translation function
(the Collator object's sort_key method)
tf = sorting.TranslateFacet(facet, c.sort_key)

Use the facet to sort the search results
results = searcher.search(myquery, sortedby=tf)

(You can pass multiple “wrapped” facets to the TranslateFacet, and it will
call the function with the values of the facets as multiple arguments.)

The TranslateFacet can also be very useful with numeric fields to sort on the
output of some formula:

Sort based on the average of two numeric fields
def average(a, b):
 return (a + b) / 2.0

Create two facets for the fields and pass them with the function to
TranslateFacet
af = sorting.FieldFacet("age")
wf = sorting.FieldFacet("weight")
facet = sorting.TranslateFacet(average, af, wf)

results = searcher.search(myquery. sortedby=facet)

Remember that you can still sort by multiple facets. For example, you could sort
by a numeric value transformed by a quantizing function first, and then if that
is equal sort by the value of another field:

Sort by a quantized size first, then by name
tf = sorting.TranslateFacet(quantize, sorting.FieldFacet("size"))
results = searcher.search(myquery, sortedby=[tf, "name"])

Expert: writing your own facet

TBD.

How to create highlighted search result excerpts

Overview

The highlighting system works as a pipeline, with four component types.

	Fragmenters chop up the original text into __fragments__, based on the
locations of matched terms in the text.

	Scorers assign a score to each fragment, allowing the system to rank the
best fragments by whatever criterion.

	Order functions control in what order the top-scoring fragments are
presented to the user. For example, you can show the fragments in the order
they appear in the document (FIRST) or show higher-scoring fragments first
(SCORE)

	Formatters turn the fragment objects into human-readable output, such as
an HTML string.

Requirements

Highlighting requires that you have the text of the indexed document available.
You can keep the text in a stored field, or if the original text is available
in a file, database column, etc, just reload it on the fly. Note that you might
need to process the text to remove e.g. HTML tags, wiki markup, etc.

How to

Get search results:

results = mysearcher.search(myquery)
for hit in results:
 print(hit["title"])

You can use the highlights() method on the
whoosh.searching.Hit object to get highlighted snippets from the
document containing the search terms.

The first argument is the name of the field to highlight. If the field is
stored, this is the only argument you need to supply:

results = mysearcher.search(myquery)
for hit in results:
 print(hit["title"])
 # Assume "content" field is stored
 print(hit.highlights("content"))

If the field is not stored, you need to retrieve the text of the field some
other way. For example, reading it from the original file or a database. Then
you can supply the text to highlight with the text argument:

results = mysearcher.search(myquery)
for hit in results:
 print(hit["title"])

 # Assume the "path" stored field contains a path to the original file
 with open(hit["path"]) as fileobj:
 filecontents = fileobj.read()

 print(hit.highlights("content", text=filecontents))

The character limit

By default, Whoosh only pulls fragments from the first 32K characters of the
text. This prevents very long texts from bogging down the highlighting process
too much, and is usually justified since important/summary information is
usually at the start of a document. However, if you find the highlights are
missing information (for example, very long encyclopedia articles where the
terms appear in a later section), you can increase the fragmenter’s character
limit.

You can change the character limit on the results object like this:

results = mysearcher.search(myquery)
results.fragmenter.charlimit = 100000

To turn off the character limit:

results.fragmenter.charlimit = None

If you instantiate a custom fragmenter, you can set the character limit on it
directly:

sf = highlight.SentenceFragmenter(charlimit=100000)
results.fragmenter = sf

See below for information on customizing the highlights.

If you increase or disable the character limit to highlight long documents, you
may need to use the tips in the “speeding up highlighting” section below to
make highlighting faster.

Customizing the highlights

Number of fragments

You can use the top keyword argument to control the number of fragments
returned in each snippet:

Show a maximum of 5 fragments from the document
print hit.highlights("content", top=5)

Fragment size

The default fragmenter has a maxchars attribute (default 200) controlling
the maximum length of a fragment, and a surround attribute (default 20)
controlling the maximum number of characters of context to add at the beginning
and end of a fragment:

Allow larger fragments
results.fragmenter.maxchars = 300

Show more context before and after
results.fragmenter.surround = 50

Fragmenter

A fragmenter controls how to extract excerpts from the original text.

The highlight module has the following pre-made fragmenters:

	whoosh.highlight.ContextFragmenter (the default)

	This is a “smart” fragmenter that finds matched terms and then pulls
in surround text to form fragments. This fragmenter only yields
fragments that contain matched terms.

	whoosh.highlight.SentenceFragmenter

	Tries to break the text into fragments based on sentence punctuation
(”.”, ”!”, and ”?”). This object works by looking in the original
text for a sentence end as the next character after each token’s
‘endchar’. Can be fooled by e.g. source code, decimals, etc.

	whoosh.highlight.WholeFragmenter

	Returns the entire text as one “fragment”. This can be useful if you
are highlighting a short bit of text and don’t need to fragment it.

The different fragmenters have different options. For example, the default
ContextFragmenter lets you set the maximum
fragment size and the size of the context to add on either side:

my_cf = highlight.ContextFragmenter(maxchars=100, surround=30)

See the whoosh.highlight docs for more information.

To use a different fragmenter:

results.fragmenter = my_cf

Scorer

A scorer is a callable that takes a whoosh.highlight.Fragment object and
returns a sortable value (where higher values represent better fragments).
The default scorer adds up the number of matched terms in the fragment, and
adds a “bonus” for the number of __different__ matched terms. The highlighting
system uses this score to select the best fragments to show to the user.

As an example of a custom scorer, to rank fragments by lowest standard
deviation of the positions of matched terms in the fragment:

def StandardDeviationScorer(fragment):
 """Gives higher scores to fragments where the matched terms are close
 together.
 """

 # Since lower values are better in this case, we need to negate the
 # value
 return 0 - stddev([t.pos for t in fragment.matched])

To use a different scorer:

results.scorer = StandardDeviationScorer

Order

The order is a function that takes a fragment and returns a sortable value used
to sort the highest-scoring fragments before presenting them to the user (where
fragments with lower values appear before fragments with higher values).

The highlight module has the following order functions.

	FIRST (the default)

	Show fragments in the order they appear in the document.

	SCORE

	Show highest scoring fragments first.

The highlight module also includes LONGER (longer fragments first) and
SHORTER (shorter fragments first), but they probably aren’t as generally
useful.

To use a different order:

results.order = highlight.SCORE

Formatter

A formatter contols how the highest scoring fragments are turned into a
formatted bit of text for display to the user. It can return anything
(e.g. plain text, HTML, a Genshi event stream, a SAX event generator,
or anything else useful to the calling system).

The highlight module contains the following pre-made formatters.

	whoosh.highlight.HtmlFormatter

	Outputs a string containing HTML tags (with a class attribute)
around the matched terms.

	whoosh.highlight.UppercaseFormatter

	Converts the matched terms to UPPERCASE.

	whoosh.highlight.GenshiFormatter

	Outputs a Genshi event stream, with the matched terms wrapped in a
configurable element.

The easiest way to create a custom formatter is to subclass
highlight.Formatter and override the format_token method:

class BracketFormatter(highlight.Formatter):
 """Puts square brackets around the matched terms.
 """

 def format_token(self, text, token, replace=False):
 # Use the get_text function to get the text corresponding to the
 # token
 tokentext = highlight.get_text(text, token, replace)

 # Return the text as you want it to appear in the highlighted
 # string
 return "[%s]" % tokentext

To use a different formatter:

brf = BracketFormatter()
results.formatter = brf

If you need more control over the formatting (or want to output something other
than strings), you will need to override other methods. See the documentation
for the whoosh.highlight.Formatter class.

Highlighter object

Rather than setting attributes on the results object, you can create a
reusable whoosh.highlight.Highlighter object. Keyword arguments let
you change the fragmenter, scorer, order, and/or formatter:

hi = highlight.Highlighter(fragmenter=my_cf, scorer=sds)

You can then use the whoosh.highlight.Highlighter.highlight_hit() method
to get highlights for a Hit object:

for hit in results:
 print(hit["title"])
 print(hi.highlight_hit(hit))

(When you assign to a Results object’s fragmenter, scorer, order,
or formatter attributes, you’re actually changing the values on the
results object’s default Highlighter object.)

Speeding up highlighting

Recording which terms matched in which documents during the search may make
highlighting faster, since it will skip documents it knows don’t contain any
matching terms in the given field:

Record per-document term matches
results = searcher.search(myquery, terms=True)

PinpointFragmenter

Usually the highlighting system uses the field’s analyzer to re-tokenize the
document’s text to find the matching terms in context. If you have long
documents and have increased/disabled the character limit, and/or if the field
has a very complex analyzer, re-tokenizing may be slow.

Instead of retokenizing, Whoosh can look up the character positions of the
matched terms in the index. Looking up the character positions is not
instantaneous, but is usually faster than analyzing large amounts of text.

To use whoosh.highlight.PinpointFragmenter and avoid re-tokenizing the
document text, you must do all of the following:

Index the field with character information (this will require re-indexing an
existing index):

Index the start and end chars of each term
schema = fields.Schema(content=fields.TEXT(stored=True, chars=True))

Record per-document term matches in the results:

Record per-document term matches
results = searcher.search(myquery, terms=True)

Set a whoosh.highlight.PinpointFragmenter as the fragmenter:

results.fragmenter = highlight.PinpointFragmenter()

PinpointFragmenter limitations

When the highlighting system does not re-tokenize the text, it doesn’t know
where any other words are in the text except the matched terms it looked up in
the index. Therefore when the fragmenter adds surrounding context, it just adds
or a certain number of characters blindly, and so doesn’t distinguish between
content and whitespace, or break on word boundaries, for example:

>>> hit.highlights("content")
're when the fragmenter\n ad'

(This can be embarassing when the word fragments form dirty words!)

One way to avoid this is to not show any surrounding context, but then
fragments containing one matched term will contain ONLY that matched term:

>>> hit.highlights("content")
'fragmenter'

Alternatively, you can normalize whitespace in the text before passing it to
the highlighting system:

>>> text = searcher.stored_
>>> re.sub("[\t\r\n]+", " ", text)
>>> hit.highlights("content", text=text)

...and use the autotrim option of PinpointFragmenter to automatically
strip text before the first space and after the last space in the fragments:

>>> results.fragmenter = highlight.PinpointFragmenter(autotrim=True)
>>> hit.highlights("content")
'when the fragmenter'

Using the low-level API

Usage

The following function lets you retokenize and highlight a piece of text using
an analyzer:

from whoosh.highlight import highlight

excerpts = highlight(text, terms, analyzer, fragmenter, formatter, top=3,
 scorer=BasicFragmentScorer, minscore=1, order=FIRST)

	text

	The original text of the document.

	terms

	A sequence or set containing the query words to match, e.g. (“render”,
“shader”).

	analyzer

	The analyzer to use to break the document text into tokens for matching
against the query terms. This is usually the analyzer for the field the
query terms are in.

	fragmenter

	A whoosh.highlight.Fragmenter object, see below.

	formatter

	A whoosh.highlight.Formatter object, see below.

	top

	The number of fragments to include in the output.

	scorer

	A whoosh.highlight.FragmentScorer object. The only scorer currently
included with Whoosh is BasicFragmentScorer, the
default.

	minscore

	The minimum score a fragment must have to be considered for inclusion.

	order

	An ordering function that determines the order of the “top” fragments in the
output text.

Query expansion and Key word extraction

Overview

Whoosh provides methods for computing the “key terms” of a set of documents. For
these methods, “key terms” basically means terms that are frequent in the given
documents, but relatively infrequent in the indexed collection as a whole.

Because this is a purely statistical operation, not a natural language
processing or AI function, the quality of the results will vary based on the
content, the size of the document collection, and the number of documents for
which you extract keywords.

These methods can be useful for providing the following features to users:

	Search term expansion. You can extract key terms for the top N results from a
query and suggest them to the user as additional/alternate query terms to try.

	Tag suggestion. Extracting the key terms for a single document may yield
useful suggestions for tagging the document.

	“More like this”. You can extract key terms for the top ten or so results from
a query (and removing the original query terms), and use those key words as
the basis for another query that may find more documents using terms the user
didn’t think of.

Usage

	Get more documents like a certain search hit. This requires that the field
you want to match on is vectored or stored, or that you have access to the
original text (such as from a database).

Use more_like_this():

results = mysearcher.search(myquery)
first_hit = results[0]
more_results = first_hit.more_like_this("content")

	Extract keywords for the top N documents in a
whoosh.searching.Results object. This requires that the field is
either vectored or stored.

Use the key_terms() method of the
whoosh.searching.Results object to extract keywords from the top N
documents of the result set.

For example, to extract five key terms from the content field of the top
ten documents of a results object:

keywords = [keyword for keyword, score
 in results.key_terms("content", docs=10, numterms=5)

	Extract keywords for an arbitrary set of documents. This requires that the
field is either vectored or stored.

Use the document_number() or
document_numbers() methods of the
whoosh.searching.Searcher object to get the document numbers for the
document(s) you want to extract keywords from.

Use the key_terms() method of a
whoosh.searching.Searcher to extract the keywords, given the list of
document numbers.

For example, let’s say you have an index of emails. To extract key terms from
the content field of emails whose emailto field contains
matt@whoosh.ca:

with email_index.searcher() as s:
 docnums = s.document_numbers(emailto=u"matt@whoosh.ca")
 keywords = [keyword for keyword, score
 in s.key_terms(docnums, "body")]

	Extract keywords from arbitrary text not in the index.

Use the key_terms_from_text() method of a
whoosh.searching.Searcher to extract the keywords, given the text:

with email_index.searcher() as s:
 keywords = [keyword for keyword, score
 in s.key_terms_from_text("body", mytext)]

Expansion models

The ExpansionModel subclasses in the whoosh.classify module implement
different weighting functions for key words. These models are translated into
Python from original Java implementations in Terrier.

“Did you mean... ?” Correcting errors in user queries

Overview

Whoosh can quickly suggest replacements for mis-typed words by returning
a list of words from the index (or a dictionary) that are close to the
mis-typed word:

with ix.searcher() as s:
 corrector = s.corrector("text")
 for mistyped_word in mistyped_words:
 print corrector.suggest(mistyped_word, limit=3)

See the whoosh.spelling.Corrector.suggest() method documentation
for information on the arguments.

Currently the suggestion engine is more like a “typo corrector” than a
real “spell checker” since it doesn’t do the kind of sophisticated
phonetic matching or semantic/contextual analysis a good spell checker
might. However, it is still very useful.

There are two main strategies for correcting words:

	Use the terms from an index field.

	Use words from a word list.

Pulling suggestions from an indexed field

In Whoosh 2.7 and later, spelling suggestions are available on all fields.
However, if you have an analyzer that modifies the indexed words (such as
stemming), you can add spelling=True to a field to have it store separate
unmodified versions of the terms for spelling suggestions:

ana = analysis.StemmingAnalyzer()
schema = fields.Schema(text=TEXT(analyzer=ana, spelling=True))

You can then use the whoosh.searching.Searcher.corrector() method
to get a corrector for a field:

corrector = searcher.corrector("content")

The advantage of using the contents of an index field is that when you
are spell checking queries on that index, the suggestions are tailored
to the contents of the index. The disadvantage is that if the indexed
documents contain spelling errors, then the spelling suggestions will
also be erroneous.

Pulling suggestions from a word list

There are plenty of word lists available on the internet you can use to
populate the spelling dictionary.

(In the following examples, word_list can be a list of unicode
strings, or a file object with one word on each line.)

To create a whoosh.spelling.Corrector object from a sorted word list:

from whoosh.spelling import ListCorrector

word_list must be a sorted list of unicocde strings
corrector = ListCorrector(word_list)

Merging two or more correctors

You can combine suggestions from two sources (for example, the contents
of an index field and a word list) using a
whoosh.spelling.MultiCorrector:

c1 = searcher.corrector("content")
c2 = spelling.ListCorrector(word_list)
corrector = MultiCorrector([c1, c2])

Correcting user queries

You can spell-check a user query using the
whoosh.searching.Searcher.correct_query() method:

from whoosh import qparser

Parse the user query string
qp = qparser.QueryParser("content", myindex.schema)
q = qp.parse(qstring)

Try correcting the query
with myindex.searcher() as s:
 corrected = s.correct_query(q, qstring)
 if corrected.query != q:
 print("Did you mean:", corrected.string)

The correct_query method returns an object with the following
attributes:

	query

	A corrected whoosh.query.Query tree. You can test
whether this is equal (==) to the original parsed query to
check if the corrector actually changed anything.

	string

	A corrected version of the user’s query string.

	tokens

	A list of corrected token objects representing the corrected
terms. You can use this to reformat the user query (see below).

You can use a whoosh.highlight.Formatter object to format the
corrected query string. For example, use the
HtmlFormatter to format the corrected string
as HTML:

from whoosh import highlight

hf = highlight.HtmlFormatter()
corrected = s.correct_query(q, qstring, formatter=hf)

See the documentation for
whoosh.searching.Searcher.correct_query() for information on the
defaults and arguments.

Field caches

The default (filedb) backend uses field caches in certain circumstances.
The field cache basically pre-computes the order of documents in the index to
speed up sorting and faceting.

Generating field caches can take time the first time you sort/facet on a large
index. The field cache is kept in memory (and by default written to disk when it
is generated) so subsequent sorted/faceted searches should be faster.

The default caching policy never expires field caches, so reused searchers and/or
sorting a lot of different fields could use up quite a bit of memory with large
indexes.

Customizing cache behaviour

(The following API examples refer to the default filedb backend.)

By default, Whoosh saves field caches to disk. To prevent a reader or searcher
from writing out field caches, do this before you start using it:

searcher.set_caching_policy(save=False)

By default, if caches are written to disk they are saved in the index directory.
To tell a reader or searcher to save cache files to a different location, create
a storage object and pass it to the storage keyword argument:

from whoosh.filedb.filestore import FileStorage

mystorage = FileStorage("path/to/cachedir")
reader.set_caching_policy(storage=mystorage)

Creating a custom caching policy

Expert users who want to implement a custom caching policy (for example, to add
cache expiration) should subclass whoosh.filedb.fieldcache.FieldCachingPolicy.
Then you can pass an instance of your policy object to the set_caching_policy
method:

searcher.set_caching_policy(MyPolicy())

Tips for speeding up batch indexing

Overview

Indexing documents tends to fall into two general patterns: adding documents
one at a time as they are created (as in a web application), and adding a bunch
of documents at once (batch indexing).

The following settings and alternate workflows can make batch indexing faster.

StemmingAnalyzer cache

The stemming analyzer by default uses a least-recently-used (LRU) cache to limit
the amount of memory it uses, to prevent the cache from growing very large if
the analyzer is reused for a long period of time. However, the LRU cache can
slow down indexing by almost 200% compared to a stemming analyzer with an
“unbounded” cache.

When you’re indexing in large batches with a one-shot instance of the
analyzer, consider using an unbounded cache:

w = myindex.writer()
Get the analyzer object from a text field
stem_ana = w.schema["content"].format.analyzer
Set the cachesize to -1 to indicate unbounded caching
stem_ana.cachesize = -1
Reset the analyzer to pick up the changed attribute
stem_ana.clear()

Use the writer to index documents...

The limitmb parameter

The limitmb parameter to whoosh.index.Index.writer() controls the
maximum memory (in megabytes) the writer will use for the indexing pool. The
higher the number, the faster indexing will be.

The default value of 128 is actually somewhat low, considering many people
have multiple gigabytes of RAM these days. Setting it higher can speed up
indexing considerably:

from whoosh import index

ix = index.open_dir("indexdir")
writer = ix.writer(limitmb=256)

Note

The actual memory used will be higher than this value because of interpreter
overhead (up to twice as much!). It is very useful as a tuning parameter,
but not for trying to exactly control the memory usage of Whoosh.

The procs parameter

The procs parameter to whoosh.index.Index.writer() controls the
number of processors the writer will use for indexing (via the
multiprocessing module):

from whoosh import index

ix = index.open_dir("indexdir")
writer = ix.writer(procs=4)

Note that when you use multiprocessing, the limitmb parameter controls the
amount of memory used by each process, so the actual memory used will be
limitmb * procs:

Each process will use a limit of 128, for a total of 512
writer = ix.writer(procs=4, limitmb=128)

The multisegment parameter

The procs parameter causes the default writer to use multiple processors to
do much of the indexing, but then still uses a single process to merge the pool
of each sub-writer into a single segment.

You can get much better indexing speed by also using the multisegment=True
keyword argument, which instead of merging the results of each sub-writer,
simply has them each just write out a new segment:

from whoosh import index

ix = index.open_dir("indexdir")
writer = ix.writer(procs=4, multisegment=True)

The drawback is that instead
of creating a single new segment, this option creates a number of new segments
at least equal to the number of processes you use.

For example, if you use procs=4, the writer will create four new segments.
(If you merge old segments or call add_reader on the parent writer, the
parent writer will also write a segment, meaning you’ll get five new segments.)

So, while multisegment=True is much faster than a normal writer, you should
only use it for large batch indexing jobs (or perhaps only for indexing from
scratch). It should not be the only method you use for indexing, because
otherwise the number of segments will tend to increase forever!

Concurrency, locking, and versioning

Concurrency

The FileIndex object is “stateless” and should be share-able between
threads.

A Reader object (which underlies the Searcher object) wraps open files and often
individual methods rely on consistent file cursor positions (e.g. they do two
file.read()s in a row, so if another thread moves the cursor between the two
read calls Bad Things would happen). You should use one Reader/Searcher per
thread in your code.

Readers/Searchers tend to cache information (such as field caches for sorting),
so if you can share one across multiple search requests, it’s a big performance
win.

Locking

Only one thread/process can write to an index at a time. When you open a writer,
it locks the index. If you try to open a writer on the same index in another
thread/process, it will raise whoosh.store.LockError.

In a multi-threaded or multi-process environment your code needs to be aware
that opening a writer may raise this exception if a writer is already open.
Whoosh includes a couple of example implementations
(whoosh.writing.AsyncWriter and whoosh.writing.BufferedWriter)
of ways to work around the write lock.

While the writer is open and during the commit, the index is still available
for reading. Existing readers are unaffected and new readers can open the
current index normally.

Lock files

Locking the index is accomplished by acquiring an exclusive file lock on the
<indexname>_WRITELOCK file in the index directory. The file is not deleted
after the file lock is released, so the fact that the file exists does not
mean the index is locked.

Versioning

When you open a reader/searcher, the reader represents a view of the current
version of the index. If someone writes changes to the index, any readers
that are already open will not pick up the changes automatically. A reader
always sees the index as it existed when the reader was opened.

If you are re-using a Searcher across multiple search requests, you can check
whether the Searcher is a view of the latest version of the index using
whoosh.searching.Searcher.up_to_date(). If the searcher is not up to date,
you can get an up-to-date copy of the searcher using
whoosh.searching.Searcher.refresh():

If 'searcher' is not up-to-date, replace it
searcher = searcher.refresh()

(If the searcher has the latest version of the index, refresh() simply
returns it.)

Calling Searcher.refresh() is more efficient that closing the searcher and
opening a new one, since it will re-use any underlying readers and caches that
haven’t changed.

Indexing and searching document hierarchies

Overview

Whoosh’s full-text index is essentially a flat database of documents. However,
Whoosh supports two techniques for simulating the indexing and querying of
hierarchical documents, that is, sets of documents that form a parent-child
hierarchy, such as “Chapter - Section - Paragraph” or
“Module - Class - Method”.

You can specify parent-child relationships at indexing time, by grouping
documents in the same hierarchy, and then use the
whoosh.query.NestedParent and/or whoosh.query.NestedChildren
to find parents based on their children or vice-versa.

Alternatively, you can use query time joins, essentially like external key
joins in a database, where you perform one search to find a relevant document,
then use a stored value on that document (for example, a parent field) to
look up another document.

Both methods have pros and cons.

Using nested document indexing

Indexing

This method works by indexing a “parent” document and all its “child” documents
as a “group” so they are guaranteed to end up in the same segment. You can
use the context manager returned by IndexWriter.group() to group
documents:

with ix.writer() as w:
 with w.group():
 w.add_document(kind="class", name="Index")
 w.add_document(kind="method", name="add document")
 w.add_document(kind="method", name="add reader")
 w.add_document(kind="method", name="close")
 with w.group():
 w.add_document(kind="class", name="Accumulator")
 w.add_document(kind="method", name="add")
 w.add_document(kind="method", name="get result")
 with w.group():
 w.add_document(kind="class", name="Calculator")
 w.add_document(kind="method", name="add")
 w.add_document(kind="method", name="add all")
 w.add_document(kind="method", name="add some")
 w.add_document(kind="method", name="multiply")
 w.add_document(kind="method", name="close")
 with w.group():
 w.add_document(kind="class", name="Deleter")
 w.add_document(kind="method", name="add")
 w.add_document(kind="method", name="delete")

Alternatively you can use the start_group() and end_group() methods:

with ix.writer() as w:
 w.start_group()
 w.add_document(kind="class", name="Index")
 w.add_document(kind="method", name="add document")
 w.add_document(kind="method", name="add reader")
 w.add_document(kind="method", name="close")
 w.end_group()

Each level of the hierarchy should have a query that distinguishes it from
other levels (for example, in the above index, you can use kind:class or
kind:method to match different levels of the hierarchy).

Once you’ve indexed the hierarchy of documents, you can use two query types to
find parents based on children or vice-versa.

(There is currently no support in the default query parser for nested queries.)

NestedParent query

The whoosh.query.NestedParent query type lets you specify a query for
child documents, but have the query return an “ancestor” document from higher
in the hierarchy:

First, we need a query that matches all the documents in the "parent"
level we want of the hierarchy
all_parents = query.Term("kind", "class")

Then, we need a query that matches the children we want to find
wanted_kids = query.Term("name", "close")

Now we can make a query that will match documents where "name" is
"close", but the query will return the "parent" documents of the matching
children
q = query.NestedParent(all_parents, wanted_kids)
results = Index, Calculator

Note that in a hierarchy with more than two levels, you can specify a “parents”
query that matches any level of the hierarchy, so you can return the top-level
ancestors of the matching children, or the second level, third level, etc.

The query works by first building a bit vector representing which documents are
“parents”:

Index
| Calculator
| |
1000100100000100
 | |
 | Deleter
 Accumulator

Then for each match of the “child” query, it calculates the previous parent
from the bit vector and returns it as a match (it only returns each parent once
no matter how many children match). This parent lookup is very efficient:

1000100100000100
 |
|<-+ close

NestedChildren query

The opposite of NestedParent is whoosh.query.NestedChildren. This
query lets you match parents but return their children. This is useful, for
example, to search for an album title and return the songs in the album:

Query that matches all documents in the "parent" level we want to match
at
all_parents = query.Term("kind", "album")

Parent documents we want to match
wanted_parents = query.Term("album_title", "heaven")

Now we can make a query that will match parent documents where "album_title"
contains "heaven", but the query will return the "child" documents of the
matching parents
q1 = query.NestedChildren(all_parents, wanted_parents)

You can then combine that query with an AND clause, for example to find
songs with “hell” in the song title that occur on albums with “heaven” in the
album title:

q2 = query.And([q1, query.Term("song_title", "hell")])

Deleting and updating hierarchical documents

The drawback of the index-time method is updating and deleting. Because the
implementation of the queries depends on the parent and child documents being
contiguous in the segment, you can’t update/delete just one child document.
You can only update/delete an entire top-level document at once (for example,
if your hierarchy is “Chapter - Section - Paragraph”, you can only update or
delete entire chapters, not a section or paragraph). If the top-level of the
hierarchy represents very large blocks of text, this can involve a lot of
deleting and reindexing.

Currently Writer.update_document() does not automatically work with nested
documents. You must manually delete and re-add document groups to update them.

To delete nested document groups, use the Writer.delete_by_query()
method with a NestedParent query:

Delete the "Accumulator" class
all_parents = query.Term("kind", "class")
to_delete = query.Term("name", "Accumulator")
q = query.NestedParent(all_parents, to_delete)
with myindex.writer() as w:
 w.delete_by_query(q)

Using query-time joins

A second technique for simulating hierarchical documents in Whoosh involves
using a stored field on each document to point to its parent, and then using
the value of that field at query time to find parents and children.

For example, if we index a hierarchy of classes and methods using pointers
to parents instead of nesting:

Store a pointer to the parent on each "method" document
with ix.writer() as w:
 w.add_document(kind="class", c_name="Index", docstring="...")
 w.add_document(kind="method", m_name="add document", parent="Index")
 w.add_document(kind="method", m_name="add reader", parent="Index")
 w.add_document(kind="method", m_name="close", parent="Index")

 w.add_document(kind="class", c_name="Accumulator", docstring="...")
 w.add_document(kind="method", m_name="add", parent="Accumulator")
 w.add_document(kind="method", m_name="get result", parent="Accumulator")

 w.add_document(kind="class", c_name="Calculator", docstring="...")
 w.add_document(kind="method", m_name="add", parent="Calculator")
 w.add_document(kind="method", m_name="add all", parent="Calculator")
 w.add_document(kind="method", m_name="add some", parent="Calculator")
 w.add_document(kind="method", m_name="multiply", parent="Calculator")
 w.add_document(kind="method", m_name="close", parent="Calculator")

 w.add_document(kind="class", c_name="Deleter", docstring="...")
 w.add_document(kind="method", m_name="add", parent="Deleter")
 w.add_document(kind="method", m_name="delete", parent="Deleter")

Now do manual joins at query time
with ix.searcher() as s:
 # Tip: Searcher.document() and Searcher.documents() let you look up
 # documents by field values more easily than using Searcher.search()

 # Children to parents:
 # Print the docstrings of classes on which "close" methods occur
 for child_doc in s.documents(m_name="close"):
 # Use the stored value of the "parent" field to look up the parent
 # document
 parent_doc = s.document(c_name=child_doc["parent"])
 # Print the parent document's stored docstring field
 print(parent_doc["docstring"])

 # Parents to children:
 # Find classes with "big" in the docstring and print their methods
 q = query.Term("kind", "class") & query.Term("docstring", "big")
 for hit in s.search(q, limit=None):
 print("Class name=", hit["c_name"], "methods:")
 for child_doc in s.documents(parent=hit["c_name"]):
 print(" Method name=", child_doc["m_name"])

This technique is more flexible than index-time nesting in that you can
delete/update individual documents in the hierarchy piece by piece, although it
doesn’t support finding different parent levels as easily. It is also slower
than index-time nesting (potentially much slower), since you must perform
additional searches for each found document.

Future versions of Whoosh may include “join” queries to make this process more
efficient (or at least more automatic).

Whoosh recipes

General

Get the stored fields for a document from the document number

stored_fields = searcher.stored_fields(docnum)

Analysis

Eliminate words shorter/longer than N

Use a StopFilter and the minsize and maxsize
keyword arguments. If you just want to filter based on size and not common
words, set the stoplist to None:

sf = analysis.StopFilter(stoplist=None, minsize=2, maxsize=40)

Allow optional case-sensitive searches

A quick and easy way to do this is to index both the original and lowercased
versions of each word. If the user searches for an all-lowercase word, it acts
as a case-insensitive search, but if they search for a word with any uppercase
characters, it acts as a case-sensitive search:

class CaseSensitivizer(analysis.Filter):
 def __call__(self, tokens):
 for t in tokens:
 yield t
 if t.mode == "index":
 low = t.text.lower()
 if low != t.text:
 t.text = low
 yield t

ana = analysis.RegexTokenizer() | CaseSensitivizer()
[t.text for t in ana("The new SuperTurbo 5000", mode="index")]
["The", "the", "new", "SuperTurbo", "superturbo", "5000"]

Searching

Find every document

myquery = query.Every()

iTunes-style search-as-you-type

Use the whoosh.analysis.NgramWordAnalyzer as the analyzer for the
field you want to search as the user types. You can save space in the index by
turning off positions in the field using phrase=False, since phrase
searching on N-gram fields usually doesn’t make much sense:

For example, to search the "title" field as the user types
analyzer = analysis.NgramWordAnalyzer()
title_field = fields.TEXT(analyzer=analyzer, phrase=False)
schema = fields.Schema(title=title_field)

See the documentation for the NgramWordAnalyzer class
for information on the available options.

Shortcuts

Look up documents by a field value

Single document (unique field value)
stored_fields = searcher.document(id="bacon")

Multiple documents
for stored_fields in searcher.documents(tag="cake"):
 ...

Sorting and scoring

See Sorting and faceting.

Score results based on the position of the matched term

The following scoring function uses the position of the first occurance of a
term in each document to calculate the score, so documents with the given term
earlier in the document will score higher:

from whoosh import scoring

def pos_score_fn(searcher, fieldname, text, matcher):
 poses = matcher.value_as("positions")
 return 1.0 / (poses[0] + 1)

pos_weighting = scoring.FunctionWeighting(pos_score_fn)
with myindex.searcher(weighting=pos_weighting) as s:
 ...

Results

How many hits were there?

The number of scored hits:

found = results.scored_length()

Depending on the arguments to the search, the exact total number of hits may be
known:

if results.has_exact_length():
 print("Scored", found, "of exactly", len(results), "documents")

Usually, however, the exact number of documents that match the query is not
known, because the searcher can skip over blocks of documents it knows won’t
show up in the “top N” list. If you call len(results) on a query where the
exact length is unknown, Whoosh will run an unscored version of the original
query to get the exact number. This is faster than the scored search, but may
still be noticeably slow on very large indexes or complex queries.

As an alternative, you might display the estimated total hits:

found = results.scored_length()
if results.has_exact_length():
 print("Scored", found, "of exactly", len(results), "documents")
else:
 low = results.estimated_min_length()
 high = results.estimated_length()

 print("Scored", found, "of between", low, "and", high, "documents")

Which terms matched in each hit?

Use terms=True to record term matches for each hit
results = searcher.search(myquery, terms=True)

for hit in results:
 # Which terms matched in this hit?
 print("Matched:", hit.matched_terms())

 # Which terms from the query didn't match in this hit?
 print("Didn't match:", myquery.all_terms() - hit.matched_terms())

Global information

How many documents are in the index?

Including documents that are deleted but not yet optimized away
numdocs = searcher.doc_count_all()

Not including deleted documents
numdocs = searcher.doc_count()

What fields are in the index?

return myindex.schema.names()

Is term X in the index?

return ("content", "wobble") in searcher

How many times does term X occur in the index?

Number of times content:wobble appears in all documents
freq = searcher.frequency("content", "wobble")

Number of documents containing content:wobble
docfreq = searcher.doc_frequency("content", "wobble")

Is term X in document Y?

Check if the "content" field of document 500 contains the term "wobble"

Without term vectors, skipping through list...
postings = searcher.postings("content", "wobble")
postings.skip_to(500)
return postings.id() == 500

...or the slower but easier way
docset = set(searcher.postings("content", "wobble").all_ids())
return 500 in docset

If field has term vectors, skipping through list...
vector = searcher.vector(500, "content")
vector.skip_to("wobble")
return vector.id() == "wobble"

...or the slower but easier way
wordset = set(searcher.vector(500, "content").all_ids())
return "wobble" in wordset

Whoosh API

	analysis module

	codec.base module

	collectors module

	columns module

	fields module

	filedb.filestore module

	filedb.filetables module

	filedb.structfile module

	formats module

	highlight module

	support.bitvector module

	index module

	lang.morph_en module

	lang.porter module

	lang.wordnet module

	matching module

	qparser module

	query module

	reading module

	scoring module

	searching module

	sorting module

	spelling module

	support.charset module

	support.levenshtein module

	util module

	writing module

analysis module

Classes and functions for turning a piece of text into an indexable stream
of “tokens” (usually equivalent to words). There are three general classes
involved in analysis:

	Tokenizers are always at the start of the text processing pipeline. They take
a string and yield Token objects (actually, the same token object over and
over, for performance reasons) corresponding to the tokens (words) in the
text.

Every tokenizer is a callable that takes a string and returns an iterator of
tokens.

	Filters take the tokens from the tokenizer and perform various
transformations on them. For example, the LowercaseFilter converts all tokens
to lowercase, which is usually necessary when indexing regular English text.

Every filter is a callable that takes a token generator and returns a token
generator.

	Analyzers are convenience functions/classes that “package up” a tokenizer and
zero or more filters into a single unit. For example, the StandardAnalyzer
combines a RegexTokenizer, LowercaseFilter, and StopFilter.

Every analyzer is a callable that takes a string and returns a token
iterator. (So Tokenizers can be used as Analyzers if you don’t need any
filtering).

You can compose tokenizers and filters together using the | character:

my_analyzer = RegexTokenizer() | LowercaseFilter() | StopFilter()

The first item must be a tokenizer and the rest must be filters (you can’t put
a filter first or a tokenizer after the first item).

Analyzers

	
whoosh.analysis.IDAnalyzer(lowercase=False)

	Deprecated, just use an IDTokenizer directly, with a LowercaseFilter if
desired.

	
whoosh.analysis.KeywordAnalyzer(lowercase=False, commas=False)

	Parses whitespace- or comma-separated tokens.

>>> ana = KeywordAnalyzer()
>>> [token.text for token in ana("Hello there, this is a TEST")]
["Hello", "there,", "this", "is", "a", "TEST"]

	Parameters:	
	lowercase – whether to lowercase the tokens.

	commas – if True, items are separated by commas rather than
whitespace.

	
whoosh.analysis.RegexAnalyzer(expression='\\w+(\\.?\\w+)*', gaps=False)

	Deprecated, just use a RegexTokenizer directly.

	
whoosh.analysis.SimpleAnalyzer(expression=<_sre.SRE_Pattern object>, gaps=False)

	Composes a RegexTokenizer with a LowercaseFilter.

>>> ana = SimpleAnalyzer()
>>> [token.text for token in ana("Hello there, this is a TEST")]
["hello", "there", "this", "is", "a", "test"]

	Parameters:	
	expression – The regular expression pattern to use to extract tokens.

	gaps – If True, the tokenizer splits on the expression, rather
than matching on the expression.

	
whoosh.analysis.StandardAnalyzer(expression=<_sre.SRE_Pattern object>, stoplist=frozenset(['and', 'is', 'it', 'an', 'as', 'at', 'have', 'in', 'yet', 'if', 'from', 'for', 'when', 'by', 'to', 'you', 'be', 'we', 'that', 'may', 'not', 'with', 'tbd', 'a', 'on', 'your', 'this', 'of', 'us', 'will', 'can', 'the', 'or', 'are']), minsize=2, maxsize=None, gaps=False)

	Composes a RegexTokenizer with a LowercaseFilter and optional
StopFilter.

>>> ana = StandardAnalyzer()
>>> [token.text for token in ana("Testing is testing and testing")]
["testing", "testing", "testing"]

	Parameters:	
	expression – The regular expression pattern to use to extract tokens.

	stoplist – A list of stop words. Set this to None to disable
the stop word filter.

	minsize – Words smaller than this are removed from the stream.

	maxsize – Words longer that this are removed from the stream.

	gaps – If True, the tokenizer splits on the expression, rather
than matching on the expression.

	
whoosh.analysis.StemmingAnalyzer(expression=<_sre.SRE_Pattern object>, stoplist=frozenset(['and', 'is', 'it', 'an', 'as', 'at', 'have', 'in', 'yet', 'if', 'from', 'for', 'when', 'by', 'to', 'you', 'be', 'we', 'that', 'may', 'not', 'with', 'tbd', 'a', 'on', 'your', 'this', 'of', 'us', 'will', 'can', 'the', 'or', 'are']), minsize=2, maxsize=None, gaps=False, stemfn=<function stem>, ignore=None, cachesize=50000)

	Composes a RegexTokenizer with a lower case filter, an optional stop
filter, and a stemming filter.

>>> ana = StemmingAnalyzer()
>>> [token.text for token in ana("Testing is testing and testing")]
["test", "test", "test"]

	Parameters:	
	expression – The regular expression pattern to use to extract tokens.

	stoplist – A list of stop words. Set this to None to disable
the stop word filter.

	minsize – Words smaller than this are removed from the stream.

	maxsize – Words longer that this are removed from the stream.

	gaps – If True, the tokenizer splits on the expression, rather
than matching on the expression.

	ignore – a set of words to not stem.

	cachesize – the maximum number of stemmed words to cache. The larger
this number, the faster stemming will be but the more memory it will
use. Use None for no cache, or -1 for an unbounded cache.

	
whoosh.analysis.FancyAnalyzer(expression='\\s+', stoplist=frozenset(['and', 'is', 'it', 'an', 'as', 'at', 'have', 'in', 'yet', 'if', 'from', 'for', 'when', 'by', 'to', 'you', 'be', 'we', 'that', 'may', 'not', 'with', 'tbd', 'a', 'on', 'your', 'this', 'of', 'us', 'will', 'can', 'the', 'or', 'are']), minsize=2, maxsize=None, gaps=True, splitwords=True, splitnums=True, mergewords=False, mergenums=False)

	Composes a RegexTokenizer with an IntraWordFilter, LowercaseFilter, and
StopFilter.

>>> ana = FancyAnalyzer()
>>> [token.text for token in ana("Should I call getInt or get_real?")]
["should", "call", "getInt", "get", "int", "get_real", "get", "real"]

	Parameters:	
	expression – The regular expression pattern to use to extract tokens.

	stoplist – A list of stop words. Set this to None to disable
the stop word filter.

	minsize – Words smaller than this are removed from the stream.

	maxsize – Words longer that this are removed from the stream.

	gaps – If True, the tokenizer splits on the expression, rather
than matching on the expression.

	
whoosh.analysis.NgramAnalyzer(minsize, maxsize=None)

	Composes an NgramTokenizer and a LowercaseFilter.

>>> ana = NgramAnalyzer(4)
>>> [token.text for token in ana("hi there")]
["hi t", "i th", " the", "ther", "here"]

	
whoosh.analysis.NgramWordAnalyzer(minsize, maxsize=None, tokenizer=None, at=None)

	

	
whoosh.analysis.LanguageAnalyzer(lang, expression=<_sre.SRE_Pattern object>, gaps=False, cachesize=50000)

	Configures a simple analyzer for the given language, with a
LowercaseFilter, StopFilter, and StemFilter.

>>> ana = LanguageAnalyzer("es")
>>> [token.text for token in ana("Por el mar corren las liebres")]
['mar', 'corr', 'liebr']

The list of available languages is in whoosh.lang.languages.
You can use whoosh.lang.has_stemmer() and
whoosh.lang.has_stopwords() to check if a given language has a
stemming function and/or stop word list available.

	Parameters:	
	expression – The regular expression pattern to use to extract tokens.

	gaps – If True, the tokenizer splits on the expression, rather
than matching on the expression.

	cachesize – the maximum number of stemmed words to cache. The larger
this number, the faster stemming will be but the more memory it will
use.

Tokenizers

	
class whoosh.analysis.IDTokenizer

	Yields the entire input string as a single token. For use in indexed but
untokenized fields, such as a document’s path.

>>> idt = IDTokenizer()
>>> [token.text for token in idt("/a/b 123 alpha")]
["/a/b 123 alpha"]

	
class whoosh.analysis.RegexTokenizer(expression=<_sre.SRE_Pattern object>, gaps=False)

	Uses a regular expression to extract tokens from text.

>>> rex = RegexTokenizer()
>>> [token.text for token in rex(u("hi there 3.141 big-time under_score"))]
["hi", "there", "3.141", "big", "time", "under_score"]

	Parameters:	
	expression – A regular expression object or string. Each match
of the expression equals a token. Group 0 (the entire matched text)
is used as the text of the token. If you require more complicated
handling of the expression match, simply write your own tokenizer.

	gaps – If True, the tokenizer splits on the expression, rather
than matching on the expression.

	
class whoosh.analysis.CharsetTokenizer(charmap)

	Tokenizes and translates text according to a character mapping object.
Characters that map to None are considered token break characters. For all
other characters the map is used to translate the character. This is useful
for case and accent folding.

This tokenizer loops character-by-character and so will likely be much
slower than RegexTokenizer.

One way to get a character mapping object is to convert a Sphinx charset
table file using whoosh.support.charset.charset_table_to_dict().

>>> from whoosh.support.charset import charset_table_to_dict
>>> from whoosh.support.charset import default_charset
>>> charmap = charset_table_to_dict(default_charset)
>>> chtokenizer = CharsetTokenizer(charmap)
>>> [t.text for t in chtokenizer(u'Stra\xdfe ABC')]
[u'strase', u'abc']

The Sphinx charset table format is described at
http://www.sphinxsearch.com/docs/current.html#conf-charset-table.

	Parameters:	charmap – a mapping from integer character numbers to unicode
characters, as used by the unicode.translate() method.

	
whoosh.analysis.SpaceSeparatedTokenizer()

	Returns a RegexTokenizer that splits tokens by whitespace.

>>> sst = SpaceSeparatedTokenizer()
>>> [token.text for token in sst("hi there big-time, what's up")]
["hi", "there", "big-time,", "what's", "up"]

	
whoosh.analysis.CommaSeparatedTokenizer()

	Splits tokens by commas.

Note that the tokenizer calls unicode.strip() on each match of the regular
expression.

>>> cst = CommaSeparatedTokenizer()
>>> [token.text for token in cst("hi there, what's , up")]
["hi there", "what's", "up"]

	
class whoosh.analysis.NgramTokenizer(minsize, maxsize=None)

	Splits input text into N-grams instead of words.

>>> ngt = NgramTokenizer(4)
>>> [token.text for token in ngt("hi there")]
["hi t", "i th", " the", "ther", "here"]

Note that this tokenizer does NOT use a regular expression to extract
words, so the grams emitted by it will contain whitespace, punctuation,
etc. You may want to massage the input or add a custom filter to this
tokenizer’s output.

Alternatively, if you only want sub-word grams without whitespace, you
could combine a RegexTokenizer with NgramFilter instead.

	Parameters:	
	minsize – The minimum size of the N-grams.

	maxsize – The maximum size of the N-grams. If you omit
this parameter, maxsize == minsize.

	
class whoosh.analysis.PathTokenizer(expression='[^/]+')

	A simple tokenizer that given a string "/a/b/c" yields tokens
["/a", "/a/b", "/a/b/c"].

Filters

	
class whoosh.analysis.PassFilter

	An identity filter: passes the tokens through untouched.

	
class whoosh.analysis.LoggingFilter(logger=None)

	Prints the contents of every filter that passes through as a debug
log entry.

	Parameters:	target – the logger to use. If omitted, the “whoosh.analysis”
logger is used.

	
class whoosh.analysis.MultiFilter(**kwargs)

	Chooses one of two or more sub-filters based on the ‘mode’ attribute
of the token stream.

Use keyword arguments to associate mode attribute values with
instantiated filters.

>>> iwf_for_index = IntraWordFilter(mergewords=True, mergenums=False)
>>> iwf_for_query = IntraWordFilter(mergewords=False, mergenums=False)
>>> mf = MultiFilter(index=iwf_for_index, query=iwf_for_query)

This class expects that the value of the mode attribute is consistent
among all tokens in a token stream.

	
class whoosh.analysis.TeeFilter(*filters)

	Interleaves the results of two or more filters (or filter chains).

NOTE: because it needs to create copies of each token for each sub-filter,
this filter is quite slow.

>>> target = "ALFA BRAVO CHARLIE"
>>> # In one branch, we'll lower-case the tokens
>>> f1 = LowercaseFilter()
>>> # In the other branch, we'll reverse the tokens
>>> f2 = ReverseTextFilter()
>>> ana = RegexTokenizer(r"\S+") | TeeFilter(f1, f2)
>>> [token.text for token in ana(target)]
["alfa", "AFLA", "bravo", "OVARB", "charlie", "EILRAHC"]

To combine the incoming token stream with the output of a filter chain, use
TeeFilter and make one of the filters a PassFilter.

>>> f1 = PassFilter()
>>> f2 = BiWordFilter()
>>> ana = RegexTokenizer(r"\S+") | TeeFilter(f1, f2) | LowercaseFilter()
>>> [token.text for token in ana(target)]
["alfa", "alfa-bravo", "bravo", "bravo-charlie", "charlie"]

	
class whoosh.analysis.ReverseTextFilter

	Reverses the text of each token.

>>> ana = RegexTokenizer() | ReverseTextFilter()
>>> [token.text for token in ana("hello there")]
["olleh", "ereht"]

	
class whoosh.analysis.LowercaseFilter

	Uses unicode.lower() to lowercase token text.

>>> rext = RegexTokenizer()
>>> stream = rext("This is a TEST")
>>> [token.text for token in LowercaseFilter(stream)]
["this", "is", "a", "test"]

	
class whoosh.analysis.StripFilter

	Calls unicode.strip() on the token text.

	
class whoosh.analysis.StopFilter(stoplist=frozenset(['and', 'is', 'it', 'an', 'as', 'at', 'have', 'in', 'yet', 'if', 'from', 'for', 'when', 'by', 'to', 'you', 'be', 'we', 'that', 'may', 'not', 'with', 'tbd', 'a', 'on', 'your', 'this', 'of', 'us', 'will', 'can', 'the', 'or', 'are']), minsize=2, maxsize=None, renumber=True, lang=None)

	Marks “stop” words (words too common to index) in the stream (and by
default removes them).

Make sure you precede this filter with a LowercaseFilter.

>>> stopper = RegexTokenizer() | StopFilter()
>>> [token.text for token in stopper(u"this is a test")]
["test"]
>>> es_stopper = RegexTokenizer() | StopFilter(lang="es")
>>> [token.text for token in es_stopper(u"el lapiz es en la mesa")]
["lapiz", "mesa"]

The list of available languages is in whoosh.lang.languages.
You can use whoosh.lang.has_stopwords() to check if a given language
has a stop word list available.

	Parameters:	
	stoplist – A collection of words to remove from the stream.
This is converted to a frozenset. The default is a list of
common English stop words.

	minsize – The minimum length of token texts. Tokens with
text smaller than this will be stopped. The default is 2.

	maxsize – The maximum length of token texts. Tokens with text
larger than this will be stopped. Use None to allow any length.

	renumber – Change the ‘pos’ attribute of unstopped tokens
to reflect their position with the stopped words removed.

	lang – Automatically get a list of stop words for the given
language

	
class whoosh.analysis.StemFilter(stemfn=<function stem>, lang=None, ignore=None, cachesize=50000)

	Stems (removes suffixes from) the text of tokens using the Porter
stemming algorithm. Stemming attempts to reduce multiple forms of the same
root word (for example, “rendering”, “renders”, “rendered”, etc.) to a
single word in the index.

>>> stemmer = RegexTokenizer() | StemFilter()
>>> [token.text for token in stemmer("fundamentally willows")]
["fundament", "willow"]

You can pass your own stemming function to the StemFilter. The default
is the Porter stemming algorithm for English.

>>> stemfilter = StemFilter(stem_function)

You can also use one of the Snowball stemming functions by passing the
lang keyword argument.

>>> stemfilter = StemFilter(lang="ru")

The list of available languages is in whoosh.lang.languages.
You can use whoosh.lang.has_stemmer() to check if a given language has
a stemming function available.

By default, this class wraps an LRU cache around the stemming function. The
cachesize keyword argument sets the size of the cache. To make the
cache unbounded (the class caches every input), use cachesize=-1. To
disable caching, use cachesize=None.

If you compile and install the py-stemmer library, the
PyStemmerFilter provides slightly easier access to the language
stemmers in that library.

	Parameters:	
	stemfn – the function to use for stemming.

	lang – if not None, overrides the stemfn with a language stemmer
from the whoosh.lang.snowball package.

	ignore – a set/list of words that should not be stemmed. This is
converted into a frozenset. If you omit this argument, all tokens
are stemmed.

	cachesize – the maximum number of words to cache. Use -1 for
an unbounded cache, or None for no caching.

	
class whoosh.analysis.CharsetFilter(charmap)

	Translates the text of tokens by calling unicode.translate() using the
supplied character mapping object. This is useful for case and accent
folding.

The whoosh.support.charset module has a useful map for accent folding.

>>> from whoosh.support.charset import accent_map
>>> retokenizer = RegexTokenizer()
>>> chfilter = CharsetFilter(accent_map)
>>> [t.text for t in chfilter(retokenizer(u'café'))]
[u'cafe']

Another way to get a character mapping object is to convert a Sphinx
charset table file using
whoosh.support.charset.charset_table_to_dict().

>>> from whoosh.support.charset import charset_table_to_dict
>>> from whoosh.support.charset import default_charset
>>> retokenizer = RegexTokenizer()
>>> charmap = charset_table_to_dict(default_charset)
>>> chfilter = CharsetFilter(charmap)
>>> [t.text for t in chfilter(retokenizer(u'Stra\xdfe'))]
[u'strase']

The Sphinx charset table format is described at
http://www.sphinxsearch.com/docs/current.html#conf-charset-table.

	Parameters:	charmap – a dictionary mapping from integer character numbers to
unicode characters, as required by the unicode.translate() method.

	
class whoosh.analysis.NgramFilter(minsize, maxsize=None, at=None)

	Splits token text into N-grams.

>>> rext = RegexTokenizer()
>>> stream = rext("hello there")
>>> ngf = NgramFilter(4)
>>> [token.text for token in ngf(stream)]
["hell", "ello", "ther", "here"]

	Parameters:	
	minsize – The minimum size of the N-grams.

	maxsize – The maximum size of the N-grams. If you omit this
parameter, maxsize == minsize.

	at – If ‘start’, only take N-grams from the start of each word.
if ‘end’, only take N-grams from the end of each word. Otherwise,
take all N-grams from the word (the default).

	
class whoosh.analysis.IntraWordFilter(delims=u'-_'"()!@#$%^&*[]{}<>\|;:, ./?`~=+', splitwords=True, splitnums=True, mergewords=False, mergenums=False)

	Splits words into subwords and performs optional transformations on
subword groups. This filter is funtionally based on yonik’s
WordDelimiterFilter in Solr, but shares no code with it.

	Split on intra-word delimiters, e.g. Wi-Fi -> Wi, Fi.

	When splitwords=True, split on case transitions,
e.g. PowerShot -> Power, Shot.

	When splitnums=True, split on letter-number transitions,
e.g. SD500 -> SD, 500.

	Leading and trailing delimiter characters are ignored.

	Trailing possesive “‘s” removed from subwords,
e.g. O’Neil’s -> O, Neil.

The mergewords and mergenums arguments turn on merging of subwords.

When the merge arguments are false, subwords are not merged.

	PowerShot -> 0:Power, 1:Shot (where 0 and 1 are token
positions).

When one or both of the merge arguments are true, consecutive runs of
alphabetic and/or numeric subwords are merged into an additional token with
the same position as the last sub-word.

	PowerShot -> 0:Power, 1:Shot, 1:PowerShot

	A’s+B’s&C’s -> 0:A, 1:B, 2:C, 2:ABC

	Super-Duper-XL500-42-AutoCoder! -> 0:Super, 1:Duper, 2:XL,
2:SuperDuperXL,
3:500, 4:42, 4:50042, 5:Auto, 6:Coder,
6:AutoCoder

When using this filter you should use a tokenizer that only splits on
whitespace, so the tokenizer does not remove intra-word delimiters before
this filter can see them, and put this filter before any use of
LowercaseFilter.

>>> rt = RegexTokenizer(r"\S+")
>>> iwf = IntraWordFilter()
>>> lcf = LowercaseFilter()
>>> analyzer = rt | iwf | lcf

One use for this filter is to help match different written representations
of a concept. For example, if the source text contained wi-fi, you
probably want wifi, WiFi, wi-fi, etc. to match. One way of doing this
is to specify mergewords=True and/or mergenums=True in the analyzer used
for indexing, and mergewords=False / mergenums=False in the analyzer used
for querying.

>>> iwf_i = IntraWordFilter(mergewords=True, mergenums=True)
>>> iwf_q = IntraWordFilter(mergewords=False, mergenums=False)
>>> iwf = MultiFilter(index=iwf_i, query=iwf_q)
>>> analyzer = RegexTokenizer(r"\S+") | iwf | LowercaseFilter()

(See MultiFilter.)

	Parameters:	
	delims – a string of delimiter characters.

	splitwords – if True, split at case transitions,
e.g. PowerShot -> Power, Shot

	splitnums – if True, split at letter-number transitions,
e.g. SD500 -> SD, 500

	mergewords – merge consecutive runs of alphabetic subwords into
an additional token with the same position as the last subword.

	mergenums – merge consecutive runs of numeric subwords into an
additional token with the same position as the last subword.

	
class whoosh.analysis.CompoundWordFilter(wordset, keep_compound=True)

	Given a set of words (or any object with a __contains__ method),
break any tokens in the stream that are composites of words in the word set
into their individual parts.

Given the correct set of words, this filter can break apart run-together
words and trademarks (e.g. “turbosquid”, “applescript”). It can also be
useful for agglutinative languages such as German.

The keep_compound argument lets you decide whether to keep the
compound word in the token stream along with the word segments.

>>> cwf = CompoundWordFilter(wordset, keep_compound=True)
>>> analyzer = RegexTokenizer(r"\S+") | cwf
>>> [t.text for t in analyzer("I do not like greeneggs and ham")
["I", "do", "not", "like", "greeneggs", "green", "eggs", "and", "ham"]
>>> cwf.keep_compound = False
>>> [t.text for t in analyzer("I do not like greeneggs and ham")
["I", "do", "not", "like", "green", "eggs", "and", "ham"]

	Parameters:	
	wordset – an object with a __contains__ method, such as a
set, containing strings to look for inside the tokens.

	keep_compound – if True (the default), the original compound
token will be retained in the stream before the subwords.

	
class whoosh.analysis.BiWordFilter(sep='-')

	Merges adjacent tokens into “bi-word” tokens, so that for example:

"the", "sign", "of", "four"

becomes:

"the-sign", "sign-of", "of-four"

This can be used to create fields for pseudo-phrase searching, where if
all the terms match the document probably contains the phrase, but the
searching is faster than actually doing a phrase search on individual word
terms.

The BiWordFilter is much faster than using the otherwise equivalent
ShingleFilter(2).

	
class whoosh.analysis.ShingleFilter(size=2, sep='-')

	Merges a certain number of adjacent tokens into multi-word tokens, so
that for example:

"better", "a", "witty", "fool", "than", "a", "foolish", "wit"

with ShingleFilter(3, ' ') becomes:

'better a witty', 'a witty fool', 'witty fool than', 'fool than a',
'than a foolish', 'a foolish wit'

This can be used to create fields for pseudo-phrase searching, where if
all the terms match the document probably contains the phrase, but the
searching is faster than actually doing a phrase search on individual word
terms.

If you’re using two-word shingles, you should use the functionally
equivalent BiWordFilter instead because it’s faster than
ShingleFilter.

	
class whoosh.analysis.DelimitedAttributeFilter(delimiter='^', attribute='boost', default=1.0, type=<type 'float'>)

	Looks for delimiter characters in the text of each token and stores the
data after the delimiter in a named attribute on the token.

The defaults are set up to use the ^ character as a delimiter and store
the value after the ^ as the boost for the token.

>>> daf = DelimitedAttributeFilter(delimiter="^", attribute="boost")
>>> ana = RegexTokenizer("\\S+") | DelimitedAttributeFilter()
>>> for t in ana(u("image render^2 file^0.5"))
... print("%r %f" % (t.text, t.boost))
'image' 1.0
'render' 2.0
'file' 0.5

Note that you need to make sure your tokenizer includes the delimiter and
data as part of the token!

	Parameters:	
	delimiter – a string that, when present in a token’s text,
separates the actual text from the “data” payload.

	attribute – the name of the attribute in which to store the
data on the token.

	default – the value to use for the attribute for tokens that
don’t have delimited data.

	type – the type of the data, for example str or float.
This is used to convert the string value of the data before
storing it in the attribute.

	
class whoosh.analysis.DoubleMetaphoneFilter(primary_boost=1.0, secondary_boost=0.5, combine=False)

	Transforms the text of the tokens using Lawrence Philips’s Double
Metaphone algorithm. This algorithm attempts to encode words in such a way
that similar-sounding words reduce to the same code. This may be useful for
fields containing the names of people and places, and other uses where
tolerance of spelling differences is desireable.

	Parameters:	
	primary_boost – the boost to apply to the token containing the
primary code.

	secondary_boost – the boost to apply to the token containing the
secondary code, if any.

	combine – if True, the original unencoded tokens are kept in the
stream, preceding the encoded tokens.

	
class whoosh.analysis.SubstitutionFilter(pattern, replacement)

	Performs a regular expression substitution on the token text.

This is especially useful for removing text from tokens, for example
hyphens:

ana = RegexTokenizer(r"\S+") | SubstitutionFilter("-", "")

Because it has the full power of the re.sub() method behind it, this filter
can perform some fairly complex transformations. For example, to take
tokens like 'a=b', 'c=d', 'e=f' and change them to 'b=a', 'd=c',
'f=e':

Analyzer that swaps the text on either side of an equal sign
rt = RegexTokenizer(r"\S+")
sf = SubstitutionFilter("([^/]*)/(./*)", r"\2/\1")
ana = rt | sf

	Parameters:	
	pattern – a pattern string or compiled regular expression object
describing the text to replace.

	replacement – the substitution text.

Token classes and functions

	
class whoosh.analysis.Token(positions=False, chars=False, removestops=True, mode='', **kwargs)

	Represents a “token” (usually a word) extracted from the source text being
indexed.

See “Advanced analysis” in the user guide for more information.

Because object instantiation in Python is slow, tokenizers should create
ONE SINGLE Token object and YIELD IT OVER AND OVER, changing the attributes
each time.

This trick means that consumers of tokens (i.e. filters) must never try to
hold onto the token object between loop iterations, or convert the token
generator into a list. Instead, save the attributes between iterations,
not the object:

def RemoveDuplicatesFilter(self, stream):
 # Removes duplicate words.
 lasttext = None
 for token in stream:
 # Only yield the token if its text doesn't
 # match the previous token.
 if lasttext != token.text:
 yield token
 lasttext = token.text

...or, call token.copy() to get a copy of the token object.

	Parameters:	
	positions – Whether tokens should have the token position in the
‘pos’ attribute.

	chars – Whether tokens should have character offsets in the
‘startchar’ and ‘endchar’ attributes.

	removestops – whether to remove stop words from the stream (if
the tokens pass through a stop filter).

	mode – contains a string describing the purpose for which the
analyzer is being called, i.e. ‘index’ or ‘query’.

	
whoosh.analysis.unstopped(tokenstream)

	Removes tokens from a token stream where token.stopped = True.

codec.base module

This module contains base classes/interfaces for “codec” objects.

Classes

	
class whoosh.codec.base.Codec

	

	
class whoosh.codec.base.PerDocumentWriter

	

	
class whoosh.codec.base.FieldWriter

	

	
class whoosh.codec.base.PostingsWriter

	
	
written()

	Returns True if this object has already written to disk.

	
class whoosh.codec.base.TermsReader

	

	
class whoosh.codec.base.PerDocumentReader

	
	
all_doc_ids()

	Returns an iterator of all (undeleted) document IDs in the reader.

	
class whoosh.codec.base.Segment(indexname)

	Do not instantiate this object directly. It is used by the Index object
to hold information about a segment. A list of objects of this class are
pickled as part of the TOC file.

The TOC file stores a minimal amount of information – mostly a list of
Segment objects. Segments are the real reverse indexes. Having multiple
segments allows quick incremental indexing: just create a new segment for
the new documents, and have the index overlay the new segment over previous
ones for purposes of reading/search. “Optimizing” the index combines the
contents of existing segments into one (removing any deleted documents
along the way).

	
create_file(storage, ext, **kwargs)

	Convenience method to create a new file in the given storage named
with this segment’s ID and the given extension. Any keyword arguments
are passed to the storage’s create_file method.

	
delete_document(docnum, delete=True)

	Deletes the given document number. The document is not actually
removed from the index until it is optimized.

	Parameters:	
	docnum – The document number to delete.

	delete – If False, this undeletes a deleted document.

	
deleted_count()

	Returns the total number of deleted documents in this segment.

	
doc_count()

	Returns the number of (undeleted) documents in this segment.

	
doc_count_all()

	Returns the total number of documents, DELETED OR UNDELETED, in this
segment.

	
has_deletions()

	Returns True if any documents in this segment are deleted.

	
is_deleted(docnum)

	Returns True if the given document number is deleted.

	
open_file(storage, ext, **kwargs)

	Convenience method to open a file in the given storage named with
this segment’s ID and the given extension. Any keyword arguments are
passed to the storage’s open_file method.

collectors module

This module contains “collector” objects. Collectors provide a way to gather
“raw” results from a whoosh.matching.Matcher object, implement
sorting, filtering, collation, etc., and produce a
whoosh.searching.Results object.

The basic collectors are:

	TopCollector

	Returns the top N matching results sorted by score, using block-quality
optimizations to skip blocks of documents that can’t contribute to the top
N. The whoosh.searching.Searcher.search() method uses this type of
collector by default or when you specify a limit.

	UnlimitedCollector

	Returns all matching results sorted by score. The
whoosh.searching.Searcher.search() method uses this type of collector
when you specify limit=None or you specify a limit equal to or greater
than the number of documents in the searcher.

	SortingCollector

	Returns all matching results sorted by a whoosh.sorting.Facet
object. The whoosh.searching.Searcher.search() method uses this type
of collector when you use the sortedby parameter.

Here’s an example of a simple collector that instead of remembering the matched
documents just counts up the number of matches:

class CountingCollector(Collector):
 def prepare(self, top_searcher, q, context):
 # Always call super method in prepare
 Collector.prepare(self, top_searcher, q, context)

 self.count = 0

 def collect(self, sub_docnum):
 self.count += 1

c = CountingCollector()
mysearcher.search_with_collector(myquery, c)
print(c.count)

There are also several wrapping collectors that extend or modify the
functionality of other collectors. The meth:whoosh.searching.Searcher.search
method uses many of these when you specify various parameters.

NOTE: collectors are not designed to be reentrant or thread-safe. It is
generally a good idea to create a new collector for each search.

Base classes

	
class whoosh.collectors.Collector

	Base class for collectors.

	
all_ids()

	Returns a sequence of docnums matched in this collector. (Only valid
after the collector is run.)

The default implementation is based on the docset. If a collector does
not maintain the docset, it will need to override this method.

	
collect(sub_docnum)

	This method is called for every matched document. It should do the
work of adding a matched document to the results, and it should return
an object to use as a “sorting key” for the given document (such as the
document’s score, a key generated by a facet, or just None). Subclasses
must implement this method.

If you want the score for the current document, use
self.matcher.score().

Overriding methods should add the current document offset
(self.offset) to the sub_docnum to get the top-level document
number for the matching document to add to results.

	Parameters:	sub_docnum – the document number of the current match within the
current sub-searcher. You must add self.offset to this number
to get the document’s top-level document number.

	
collect_matches()

	This method calls Collector.matches() and then for each
matched document calls Collector.collect(). Sub-classes that
want to intervene between finding matches and adding them to the
collection (for example, to filter out certain documents) can override
this method.

	
computes_count()

	Returns True if the collector naturally computes the exact number of
matching documents. Collectors that use block optimizations will return
False since they might skip blocks containing matching documents.

Note that if this method returns False you can still call count(),
but it means that method might have to do more work to calculate the
number of matching documents.

	
count()

	Returns the total number of documents matched in this collector.
(Only valid after the collector is run.)

The default implementation is based on the docset. If a collector does
not maintain the docset, it will need to override this method.

	
finish()

	This method is called after a search.

Subclasses can override this to perform set-up work, but
they should still call the superclass’s method because it sets several
necessary attributes on the collector object:

	self.runtime

	The time (in seconds) the search took.

	
matches()

	Yields a series of relative document numbers for matches
in the current subsearcher.

	
prepare(top_searcher, q, context)

	This method is called before a search.

Subclasses can override this to perform set-up work, but
they should still call the superclass’s method because it sets several
necessary attributes on the collector object:

	self.top_searcher

	The top-level searcher.

	self.q

	The query object

	self.context

	context.needs_current controls whether a wrapping collector
requires that this collector’s matcher be in a valid state at every
call to collect(). If this is False, the collector is free
to use faster methods that don’t necessarily keep the matcher
updated, such as matcher.all_ids().

	Parameters:	
	top_searcher – the top-level whoosh.searching.Searcher
object.

	q – the whoosh.query.Query object being searched for.

	context – a whoosh.searching.SearchContext object
containing information about the search.

	
remove(global_docnum)

	Removes a document from the collector. Not that this method uses the
global document number as opposed to Collector.collect() which
takes a segment-relative docnum.

	
results()

	Returns a Results object containing the
results of the search. Subclasses must implement this method

	
set_subsearcher(subsearcher, offset)

	This method is called each time the collector starts on a new
sub-searcher.

Subclasses can override this to perform set-up work, but
they should still call the superclass’s method because it sets several
necessary attributes on the collector object:

	self.subsearcher

	The current sub-searcher. If the top-level searcher is atomic, this
is the same as the top-level searcher.

	self.offset

	The document number offset of the current searcher. You must add
this number to the document number passed to
Collector.collect() to get the top-level document number
for use in results.

	self.matcher

	A whoosh.matching.Matcher object representing the matches
for the query in the current sub-searcher.

	
sort_key(sub_docnum)

	Returns a sorting key for the current match. This should return the
same value returned by Collector.collect(), but without the side
effect of adding the current document to the results.

If the collector has been prepared with context.needs_current=True,
this method can use self.matcher to get information, for example
the score. Otherwise, it should only use the provided sub_docnum,
since the matcher may be in an inconsistent state.

Subclasses must implement this method.

	
class whoosh.collectors.ScoredCollector(replace=10)

	Base class for collectors that sort the results based on document score.

	Parameters:	replace – Number of matches between attempts to replace the
matcher with a more efficient version.

	
class whoosh.collectors.WrappingCollector(child)

	Base class for collectors that wrap other collectors.

Basic collectors

	
class whoosh.collectors.TopCollector(limit=10, usequality=True, **kwargs)

	A collector that only returns the top “N” scored results.

	Parameters:	
	limit – the maximum number of results to return.

	usequality – whether to use block-quality optimizations. This may
be useful for debugging.

	
class whoosh.collectors.UnlimitedCollector(reverse=False)

	A collector that returns all scored results.

	
class whoosh.collectors.SortingCollector(sortedby, limit=10, reverse=False)

	A collector that returns results sorted by a given
whoosh.sorting.Facet object. See Sorting and faceting for more
information.

	Parameters:	
	sortedby – see Sorting and faceting.

	reverse – If True, reverse the overall results. Note that you
can reverse individual facets in a multi-facet sort key as well.

Wrappers

	
class whoosh.collectors.FilterCollector(child, allow=None, restrict=None)

	A collector that lets you allow and/or restrict certain document numbers
in the results:

uc = collectors.UnlimitedCollector()

ins = query.Term("chapter", "rendering")
outs = query.Term("status", "restricted")
fc = FilterCollector(uc, allow=ins, restrict=outs)

mysearcher.search_with_collector(myquery, fc)
print(fc.results())

This collector discards a document if:

	The allowed set is not None and a document number is not in the set, or

	The restrict set is not None and a document number is in the set.

(So, if the same document number is in both sets, that document will be
discarded.)

If you have a reference to the collector, you can use
FilterCollector.filtered_count to get the number of matching documents
filtered out of the results by the collector.

	Parameters:	
	child – the collector to wrap.

	allow – a query, Results object, or set-like object containing
docnument numbers that are allowed in the results, or None (meaning
everything is allowed).

	restrict – a query, Results object, or set-like object containing
document numbers to disallow from the results, or None (meaning
nothing is disallowed).

	
class whoosh.collectors.FacetCollector(child, groupedby, maptype=None)

	A collector that creates groups of documents based on
whoosh.sorting.Facet objects. See Sorting and faceting for more
information.

This collector is used if you specify a groupedby parameter in the
whoosh.searching.Searcher.search() method. You can use the
whoosh.searching.Results.groups() method to access the facet groups.

If you have a reference to the collector can also use
FacetedCollector.facetmaps to access the groups directly:

uc = collectors.UnlimitedCollector()
fc = FacetedCollector(uc, sorting.FieldFacet("category"))
mysearcher.search_with_collector(myquery, fc)
print(fc.facetmaps)

	Parameters:	
	groupedby – see Sorting and faceting.

	maptype – a whoosh.sorting.FacetMap type to use for any
facets that don’t specify their own.

	
class whoosh.collectors.CollapseCollector(child, keyfacet, limit=1, order=None)

	A collector that collapses results based on a facet. That is, it
eliminates all but the top N results that share the same facet key.
Documents with an empty key for the facet are never eliminated.

The “top” results within each group is determined by the result ordering
(e.g. highest score in a scored search) or an optional second “ordering”
facet.

If you have a reference to the collector you can use
CollapseCollector.collapsed_counts to access the number of documents
eliminated based on each key:

tc = TopCollector(limit=20)
cc = CollapseCollector(tc, "group", limit=3)
mysearcher.search_with_collector(myquery, cc)
print(cc.collapsed_counts)

See Collapsing results for more information.

	Parameters:	
	child – the collector to wrap.

	keyfacet – a whoosh.sorting.Facet to use for collapsing.
All but the top N documents that share a key will be eliminated
from the results.

	limit – the maximum number of documents to keep for each key.

	order – an optional whoosh.sorting.Facet to use
to determine the “top” document(s) to keep when collapsing. The
default (orderfaceet=None) uses the results order (e.g. the
highest score in a scored search).

	
class whoosh.collectors.TimeLimitCollector(child, timelimit, greedy=False, use_alarm=True)

	A collector that raises a TimeLimit exception if the search
does not complete within a certain number of seconds:

uc = collectors.UnlimitedCollector()
tlc = TimeLimitedCollector(uc, timelimit=5.8)
try:
 mysearcher.search_with_collector(myquery, tlc)
except collectors.TimeLimit:
 print("The search ran out of time!")

We can still get partial results from the collector
print(tlc.results())

IMPORTANT: On Unix systems (systems where signal.SIGALRM is defined), the
code uses signals to stop searching immediately when the time limit is
reached. On Windows, the OS does not support this functionality, so the
search only checks the time between each found document, so if a matcher
is slow the search could exceed the time limit.

	Parameters:	
	child – the collector to wrap.

	timelimit – the maximum amount of time (in seconds) to
allow for searching. If the search takes longer than this, it will
raise a TimeLimit exception.

	greedy – if True, the collector will finish adding the most
recent hit before raising the TimeLimit exception.

	use_alarm – if True (the default), the collector will try to
use signal.SIGALRM (on UNIX).

	
class whoosh.collectors.TermsCollector(child, settype=<type 'set'>)

	A collector that remembers which terms appeared in which terms appeared
in each matched document.

This collector is used if you specify terms=True in the
whoosh.searching.Searcher.search() method.

If you have a reference to the collector can also use
TermsCollector.termslist to access the term lists directly:

uc = collectors.UnlimitedCollector()
tc = TermsCollector(uc)
mysearcher.search_with_collector(myquery, tc)
tc.termdocs is a dictionary mapping (fieldname, text) tuples to
sets of document numbers
print(tc.termdocs)
tc.docterms is a dictionary mapping docnums to lists of
(fieldname, text) tuples
print(tc.docterms)

columns module

The API and implementation of columns may change in the next version of Whoosh!

This module contains “Column” objects which you can use as the argument to a
Field object’s sortable= keyword argument. Each field defines a default
column type for when the user specifies sortable=True (the object returned
by the field’s default_column() method).

The default column type for most fields is VarBytesColumn,
although numeric and date fields use NumericColumn. Expert users may use
other field types that may be faster or more storage efficient based on the
field contents. For example, if a field always contains one of a limited number
of possible values, a RefBytesColumn will save space by only storing the
values once. If a field’s values are always a fixed length, the
FixedBytesColumn saves space by not storing the length of each value.

A Column object basically exists to store configuration information and
provides two important methods: writer() to return a ColumnWriter object
and reader() to return a ColumnReader object.

Base classes

	
class whoosh.columns.Column

	Represents a “column” of rows mapping docnums to document values.

The interface requires that you store the start offset of the column, the
length of the column data, and the number of documents (rows) separately,
and pass them to the reader object.

	
default_value(reverse=False)

	Returns the default value for this column type.

	
reader(dbfile, basepos, length, doccount)

	Returns a ColumnReader object you can use to read a column
of this type from disk.

	Parameters:	
	dbfile – the StructFile to
read from.

	basepos – the offset within the file at which the column starts.

	length – the length in bytes of the column occupies in the file.

	doccount – the number of rows (documents) in the column.

	
stores_lists()

	Returns True if the column stores a list of values for each document
instead of a single value.

	
writer(dbfile)

	Returns a ColumnWriter object you can use to use to create
a column of this type on disk.

	Parameters:	dbfile – the StructFile to
write to.

	
class whoosh.columns.ColumnWriter(dbfile)

	

	
class whoosh.columns.ColumnReader(dbfile, basepos, length, doccount)

	

Basic columns

	
class whoosh.columns.VarBytesColumn(allow_offsets=True, write_offsets_cutoff=32768)

	Stores variable length byte strings. See also RefBytesColumn.

The current implementation limits the total length of all document values
a segment to 2 GB.

The default value (the value returned for a document that didn’t have a
value assigned to it at indexing time) is an empty bytestring (b'').

	Parameters:	
	allow_offsets – Whether the column should write offsets when there
are many rows in the column (this makes opening the column much
faster). This argument is mostly for testing.

	write_offsets_cutoff – Write offsets (for speed) when there are
more than this many rows in the column. This argument is mostly
for testing.

	
class whoosh.columns.FixedBytesColumn(fixedlen, default=None)

	Stores fixed-length byte strings.

	Parameters:	
	fixedlen – the fixed length of byte strings in this column.

	default – the default value to use for documents that don’t
specify a value. If you don’t specify a default, the column will
use b'\x00' * fixedlen.

	
class whoosh.columns.RefBytesColumn(fixedlen=0, default=None)

	Stores variable-length or fixed-length byte strings, similar to
VarBytesColumn and FixedBytesColumn. However, where those
columns stores a value for each document, this column keeps a list of all
the unique values in the field, and for each document stores a short
pointer into the unique list. For fields where the number of possible
values is smaller than the number of documents (for example,
“category” or “chapter”), this saves significant space.

This column type supports a maximum of 65535 unique values across all
documents in a segment. You should generally use this column type where the
number of unique values is in no danger of approaching that number (for
example, a “tags” field). If you try to index too many unique values, the
column will convert additional unique values to the default value and issue
a warning using the warnings module (this will usually be preferable to
crashing the indexer and potentially losing indexed documents).

	Parameters:	
	fixedlen – an optional fixed length for the values. If you
specify a number other than 0, the column will require all values
to be the specified length.

	default – a default value to use for documents that don’t specify
one. If you don’t specify a default, the column will use an empty
bytestring (b''), or if you specify a fixed length,
b'\x00' * fixedlen.

	
class whoosh.columns.NumericColumn(typecode, default=0)

	Stores numbers (integers and floats) as compact binary.

	Parameters:	
	typecode – a typecode character (as used by the struct
module) specifying the number type. For example, "i" for
signed integers.

	default – the default value to use for documents that don’t
specify one.

Technical columns

	
class whoosh.columns.BitColumn(compress_at=2048)

	Stores a column of True/False values compactly.

	Parameters:	compress_at – columns with this number of values or fewer will
be saved compressed on disk, and loaded into RAM for reading. Set
this to 0 to disable compression.

	
class whoosh.columns.CompressedBytesColumn(level=3, module='zlib')

	Stores variable-length byte strings compressed using deflate (by
default).

	Parameters:	
	level – the compression level to use.

	module – a string containing the name of the compression module
to use. The default is “zlib”. The module should export “compress”
and “decompress” functions.

	
class whoosh.columns.StructColumn(spec, default)

	

	
class whoosh.columns.PickleColumn(child)

	Converts arbitrary objects to pickled bytestrings and stores them using
the wrapped column (usually a VarBytesColumn or
CompressedBytesColumn).

If you can express the value you want to store as a number or bytestring,
you should use the appropriate column type to avoid the time and size
overhead of pickling and unpickling.

Experimental columns

	
class whoosh.columns.ClampedNumericColumn(child)

	An experimental wrapper type for NumericColumn that clamps out-of-range
values instead of raising an exception.

fields module

Contains functions and classes related to fields.

Schema class

	
class whoosh.fields.Schema(**fields)

	Represents the collection of fields in an index. Maps field names to
FieldType objects which define the behavior of each field.

Low-level parts of the index use field numbers instead of field names for
compactness. This class has several methods for converting between the
field name, field number, and field object itself.

All keyword arguments to the constructor are treated as fieldname =
fieldtype pairs. The fieldtype can be an instantiated FieldType object,
or a FieldType sub-class (in which case the Schema will instantiate it
with the default constructor before adding it).

For example:

s = Schema(content = TEXT,
 title = TEXT(stored = True),
 tags = KEYWORD(stored = True))

	
add(name, fieldtype, glob=False)

	Adds a field to this schema.

	Parameters:	
	name – The name of the field.

	fieldtype – An instantiated fields.FieldType object, or a
FieldType subclass. If you pass an instantiated object, the schema
will use that as the field configuration for this field. If you
pass a FieldType subclass, the schema will automatically
instantiate it with the default constructor.

	
copy()

	Returns a shallow copy of the schema. The field instances are not
deep copied, so they are shared between schema copies.

	
items()

	Returns a list of (“fieldname”, field_object) pairs for the fields
in this schema.

	
names(check_names=None)

	Returns a list of the names of the fields in this schema.

	Parameters:	check_names – (optional) sequence of field names to check
whether the schema accepts them as (dynamic) field names -
acceptable names will also be in the result list.
Note: You may also have static field names in check_names, that
won’t create duplicates in the result list. Unsupported names
will not be in the result list.

	
scorable_names()

	Returns a list of the names of fields that store field
lengths.

	
stored_names()

	Returns a list of the names of fields that are stored.

	
class whoosh.fields.SchemaClass(**fields)

	Allows you to define a schema using declarative syntax, similar to
Django models:

class MySchema(SchemaClass):
 path = ID
 date = DATETIME
 content = TEXT

You can use inheritance to share common fields between schemas:

class Parent(SchemaClass):
 path = ID(stored=True)
 date = DATETIME

class Child1(Parent):
 content = TEXT(positions=False)

class Child2(Parent):
 tags = KEYWORD

This class overrides __new__ so instantiating your sub-class always
results in an instance of Schema.

>>> class MySchema(SchemaClass):
... title = TEXT(stored=True)
... content = TEXT
...
>>> s = MySchema()
>>> type(s)
<class 'whoosh.fields.Schema'>

All keyword arguments to the constructor are treated as fieldname =
fieldtype pairs. The fieldtype can be an instantiated FieldType object,
or a FieldType sub-class (in which case the Schema will instantiate it
with the default constructor before adding it).

For example:

s = Schema(content = TEXT,
 title = TEXT(stored = True),
 tags = KEYWORD(stored = True))

FieldType base class

	
class whoosh.fields.FieldType(format, analyzer, scorable=False, stored=False, unique=False, multitoken_query='default', sortable=False, vector=None)

	Represents a field configuration.

The FieldType object supports the following attributes:

	format (formats.Format): the storage format for posting blocks.

	analyzer (analysis.Analyzer): the analyzer to use to turn text into
terms.

	scorable (boolean): whether searches against this field may be scored.
This controls whether the index stores per-document field lengths for
this field.

	stored (boolean): whether the content of this field is stored for each
document. For example, in addition to indexing the title of a document,
you usually want to store the title so it can be presented as part of
the search results.

	unique (boolean): whether this field’s value is unique to each document.
For example, ‘path’ or ‘ID’. IndexWriter.update_document() will use
fields marked as ‘unique’ to find the previous version of a document
being updated.

	multitoken_query is a string indicating what kind of query to use when
a “word” in a user query parses into multiple tokens. The string is
interpreted by the query parser. The strings understood by the default
query parser are “first” (use first token only), “and” (join the tokens
with an AND query), “or” (join the tokens with OR), “phrase” (join
the tokens with a phrase query), and “default” (use the query parser’s
default join type).

	
	vector (formats.Format or boolean): the format to use to store term

	vectors. If not a Format object, any true value means to use the
index format as the term vector format. Any flase value means don’t
store term vectors for this field.

The constructor for the base field type simply lets you supply your own
attribute values. Subclasses may configure some or all of this for you.

	
clean()

	Clears any cached information in the field and any child objects.

	
index(value, **kwargs)

	Returns an iterator of (btext, frequency, weight, encoded_value)
tuples for each unique word in the input value.

The default implementation uses the analyzer attribute to tokenize
the value into strings, then encodes them into bytes using UTF-8.

	
parse_query(fieldname, qstring, boost=1.0)

	When self_parsing() returns True, the query parser will call
this method to parse basic query text.

	
parse_range(fieldname, start, end, startexcl, endexcl, boost=1.0)

	When self_parsing() returns True, the query parser will call
this method to parse range query text. If this method returns None
instead of a query object, the parser will fall back to parsing the
start and end terms using process_text().

	
process_text(qstring, mode='', **kwargs)

	Analyzes the given string and returns an iterator of token texts.

>>> field = fields.TEXT()
>>> list(field.process_text("The ides of March"))
["ides", "march"]

	
self_parsing()

	Subclasses should override this method to return True if they want
the query parser to call the field’s parse_query() method instead
of running the analyzer on text in this field. This is useful where
the field needs full control over how queries are interpreted, such
as in the numeric field type.

	
separate_spelling()

	Returns True if the field stores unstemmed words in a separate field for
spelling suggestions.

	
sortable_terms(ixreader, fieldname)

	Returns an iterator of the “sortable” tokens in the given reader and
field. These values can be used for sorting. The default implementation
simply returns all tokens in the field.

This can be overridden by field types such as NUMERIC where some values
in a field are not useful for sorting.

	
spellable_words(value)

	Returns an iterator of each unique word (in sorted order) in the
input value, suitable for inclusion in the field’s word graph.

The default behavior is to call the field analyzer with the keyword
argument no_morph=True, which should make the analyzer skip any
morphological transformation filters (e.g. stemming) to preserve the
original form of the words. Exotic field types may need to override
this behavior.

	
spelling_fieldname(fieldname)

	Returns the name of a field to use for spelling suggestions instead of
this field.

	Parameters:	fieldname – the name of this field.

	
subfields()

	Returns an iterator of (name_prefix, fieldobject) pairs for the
fields that need to be indexed when content is put in this field. The
default implementation simply yields ("", self).

	
supports(name)

	Returns True if the underlying format supports the given posting
value type.

>>> field = TEXT()
>>> field.supports("positions")
True
>>> field.supports("chars")
False

	
to_bytes(value)

	Returns a bytes representation of the given value, appropriate to be
written to disk. The default implementation assumes a unicode value and
encodes it using UTF-8.

	
to_column_value(value)

	Returns an object suitable to be inserted into the document values
column for this field. The default implementation simply calls
self.to_bytes(value).

	
tokenize(value, **kwargs)

	Analyzes the given string and returns an iterator of Token objects
(note: for performance reasons, actually the same token yielded over
and over with different attributes).

Pre-made field types

	
class whoosh.fields.ID(stored=False, unique=False, field_boost=1.0, sortable=False, analyzer=None)

	Configured field type that indexes the entire value of the field as one
token. This is useful for data you don’t want to tokenize, such as the path
of a file.

	Parameters:	stored – Whether the value of this field is stored with the
document.

	
class whoosh.fields.IDLIST(stored=False, unique=False, expression=None, field_boost=1.0)

	Configured field type for fields containing IDs separated by whitespace
and/or punctuation (or anything else, using the expression param).

	Parameters:	
	stored – Whether the value of this field is stored with the
document.

	unique – Whether the value of this field is unique per-document.

	expression – The regular expression object to use to extract
tokens. The default expression breaks tokens on CRs, LFs, tabs,
spaces, commas, and semicolons.

	
class whoosh.fields.STORED

	Configured field type for fields you want to store but not index.

	
class whoosh.fields.KEYWORD(stored=False, lowercase=False, commas=False, scorable=False, unique=False, field_boost=1.0, sortable=False, vector=None, analyzer=None)

	Configured field type for fields containing space-separated or
comma-separated keyword-like data (such as tags). The default is to not
store positional information (so phrase searching is not allowed in this
field) and to not make the field scorable.

	Parameters:	
	stored – Whether to store the value of the field with the
document.

	commas – Whether this is a comma-separated field. If this is False
(the default), it is treated as a space-separated field.

	scorable – Whether this field is scorable.

	
class whoosh.fields.TEXT(analyzer=None, phrase=True, chars=False, stored=False, field_boost=1.0, multitoken_query='default', spelling=False, sortable=False, lang=None, vector=None, spelling_prefix='spell_')

	Configured field type for text fields (for example, the body text of an
article). The default is to store positional information to allow phrase
searching. This field type is always scorable.

	Parameters:	
	analyzer – The analysis.Analyzer to use to index the field
contents. See the analysis module for more information. If you omit
this argument, the field uses analysis.StandardAnalyzer.

	phrase – Whether the store positional information to allow phrase
searching.

	chars – Whether to store character ranges along with positions.
If this is True, “phrase” is also implied.

	stored – Whether to store the value of this field with the
document. Since this field type generally contains a lot of text,
you should avoid storing it with the document unless you need to,
for example to allow fast excerpts in the search results.

	spelling – if True, and if the field’s analyzer changes the form
of term text (such as a stemming analyzer), this field will store
extra information in a separate field (named using the
spelling_prefix keyword argument) to allow spelling suggestions
to use the unchanged word forms as spelling suggestions.

	sortable – If True, make this field sortable using the default
column type. If you pass a whoosh.columns.Column instance
instead of True, the field will use the given column type.

	lang – automaticaly configure a
whoosh.analysis.LanguageAnalyzer for the given language.
This is ignored if you also specify an analyzer.

	vector – if this value evaluates to true, store a list of the
terms in this field in each document. If the value is an instance
of whoosh.formats.Format, the index will use the object to
store the term vector. Any other true value (e.g. vector=True)
will use the field’s index format to store the term vector as well.

	
class whoosh.fields.NUMERIC(numtype=<type 'int'>, bits=32, stored=False, unique=False, field_boost=1.0, decimal_places=0, shift_step=4, signed=True, sortable=False, default=None)

	Special field type that lets you index integer or floating point
numbers in relatively short fixed-width terms. The field converts numbers
to sortable bytes for you before indexing.

You specify the numeric type of the field (int or float) when you
create the NUMERIC object. The default is int. For int, you can
specify a size in bits (32 or 64). For both int and float
you can specify a signed keyword argument (default is True).

>>> schema = Schema(path=STORED, position=NUMERIC(int, 64, signed=False))
>>> ix = storage.create_index(schema)
>>> with ix.writer() as w:
... w.add_document(path="/a", position=5820402204)
...

You can also use the NUMERIC field to store Decimal instances by specifying
a type of int or long and the decimal_places keyword argument.
This simply multiplies each number by (10 ** decimal_places) before
storing it as an integer. Of course this may throw away decimal prcesision
(by truncating, not rounding) and imposes the same maximum value limits as
int/long, but these may be acceptable for certain applications.

>>> from decimal import Decimal
>>> schema = Schema(path=STORED, position=NUMERIC(int, decimal_places=4))
>>> ix = storage.create_index(schema)
>>> with ix.writer() as w:
... w.add_document(path="/a", position=Decimal("123.45")
...

	Parameters:	
	numtype – the type of numbers that can be stored in this field,
either int, float. If you use Decimal,
use the decimal_places argument to control how many decimal
places the field will store.

	bits – When numtype is int, the number of bits to use to
store the number: 8, 16, 32, or 64.

	stored – Whether the value of this field is stored with the
document.

	unique – Whether the value of this field is unique per-document.

	decimal_places – specifies the number of decimal places to save
when storing Decimal instances. If you set this, you will always
get Decimal instances back from the field.

	shift_steps – The number of bits of precision to shift away at
each tiered indexing level. Values should generally be 1-8. Lower
values yield faster searches but take up more space. A value
of 0 means no tiered indexing.

	signed – Whether the numbers stored in this field may be
negative.

	
class whoosh.fields.DATETIME(stored=False, unique=False, sortable=False)

	Special field type that lets you index datetime objects. The field
converts the datetime objects to sortable text for you before indexing.

Since this field is based on Python’s datetime module it shares all the
limitations of that module, such as the inability to represent dates before
year 1 in the proleptic Gregorian calendar. However, since this field
stores datetimes as an integer number of microseconds, it could easily
represent a much wider range of dates if the Python datetime implementation
ever supports them.

>>> schema = Schema(path=STORED, date=DATETIME)
>>> ix = storage.create_index(schema)
>>> w = ix.writer()
>>> w.add_document(path="/a", date=datetime.now())
>>> w.commit()

	Parameters:	
	stored – Whether the value of this field is stored with the
document.

	unique – Whether the value of this field is unique per-document.

	
class whoosh.fields.BOOLEAN(stored=False, field_boost=1.0)

	Special field type that lets you index boolean values (True and False).
The field converts the boolean values to text for you before indexing.

>>> schema = Schema(path=STORED, done=BOOLEAN)
>>> ix = storage.create_index(schema)
>>> w = ix.writer()
>>> w.add_document(path="/a", done=False)
>>> w.commit()

	Parameters:	stored – Whether the value of this field is stored with the
document.

	
class whoosh.fields.NGRAM(minsize=2, maxsize=4, stored=False, field_boost=1.0, queryor=False, phrase=False, sortable=False)

	Configured field that indexes text as N-grams. For example, with a field
type NGRAM(3,4), the value “hello” will be indexed as tokens
“hel”, “hell”, “ell”, “ello”, “llo”. This field type chops the entire text
into N-grams, including whitespace and punctuation. See NGRAMWORDS
for a field type that breaks the text into words first before chopping the
words into N-grams.

	Parameters:	
	minsize – The minimum length of the N-grams.

	maxsize – The maximum length of the N-grams.

	stored – Whether to store the value of this field with the
document. Since this field type generally contains a lot of text,
you should avoid storing it with the document unless you need to,
for example to allow fast excerpts in the search results.

	queryor – if True, combine the N-grams with an Or query. The
default is to combine N-grams with an And query.

	phrase – store positions on the N-grams to allow exact phrase
searching. The default is off.

	
class whoosh.fields.NGRAMWORDS(minsize=2, maxsize=4, stored=False, field_boost=1.0, tokenizer=None, at=None, queryor=False, sortable=False)

	Configured field that chops text into words using a tokenizer,
lowercases the words, and then chops the words into N-grams.

	Parameters:	
	minsize – The minimum length of the N-grams.

	maxsize – The maximum length of the N-grams.

	stored – Whether to store the value of this field with the
document. Since this field type generally contains a lot of text,
you should avoid storing it with the document unless you need to,
for example to allow fast excerpts in the search results.

	tokenizer – an instance of whoosh.analysis.Tokenizer
used to break the text into words.

	at – if ‘start’, only takes N-grams from the start of the word.
If ‘end’, only takes N-grams from the end. Otherwise the default
is to take all N-grams from each word.

	queryor – if True, combine the N-grams with an Or query. The
default is to combine N-grams with an And query.

Exceptions

	
exception whoosh.fields.FieldConfigurationError

	

	
exception whoosh.fields.UnknownFieldError

	

filedb.filestore module

Base class

	
class whoosh.filedb.filestore.Storage

	Abstract base class for storage objects.

A storage object is a virtual flat filesystem, allowing the creation and
retrieval of file-like objects
(StructFile objects). The default
implementation (FileStorage) uses actual files in a directory.

All access to files in Whoosh goes through this object. This allows more
different forms of storage (for example, in RAM, in a database, in a single
file) to be used transparently.

For example, to create a FileStorage object:

Create a storage object
st = FileStorage("indexdir")
Create the directory if it doesn't already exist
st.create()

The Storage.create() method makes it slightly easier to swap storage
implementations. The create() method handles set-up of the storage
object. For example, FileStorage.create() creates the directory. A
database implementation might create tables. This is designed to let you
avoid putting implementation-specific setup code in your application.

	
close()

	Closes any resources opened by this storage object. For some storage
implementations this will be a no-op, but for others it is necessary
to release locks and/or prevent leaks, so it’s a good idea to call it
when you’re done with a storage object.

	
create()

	Creates any required implementation-specific resources. For example,
a filesystem-based implementation might create a directory, while a
database implementation might create tables. For example:

from whoosh.filedb.filestore import FileStorage
Create a storage object
st = FileStorage("indexdir")
Create any necessary resources
st.create()

This method returns self so you can also say:

st = FileStorage("indexdir").create()

Storage implementations should be written so that calling create() a
second time on the same storage

	Returns:	a Storage instance.

	
create_file(name)

	Creates a file with the given name in this storage.

	Parameters:	name – the name for the new file.

	Returns:	a whoosh.filedb.structfile.StructFile instance.

	
create_index(schema, indexname='MAIN', indexclass=None)

	Creates a new index in this storage.

>>> from whoosh import fields
>>> from whoosh.filedb.filestore import FileStorage
>>> schema = fields.Schema(content=fields.TEXT)
>>> # Create the storage directory
>>> st = FileStorage.create("indexdir")
>>> # Create an index in the storage
>>> ix = st.create_index(schema)

	Parameters:	
	schema – the whoosh.fields.Schema object to use for the
new index.

	indexname – the name of the index within the storage object. You
can use this option to store multiple indexes in the same storage.

	indexclass – an optional custom Index sub-class to use to
create the index files. The default is
whoosh.index.FileIndex. This method will call the
create class method on the given class to create the index.

	Returns:	a whoosh.index.Index instance.

	
delete_file(name)

	Removes the given file from this storage.

	Parameters:	name – the name to delete.

	
destroy(*args, **kwargs)

	Removes any implementation-specific resources related to this storage
object. For example, a filesystem-based implementation might delete a
directory, and a database implementation might drop tables.

The arguments are implementation-specific.

	
file_exists(name)

	Returns True if the given file exists in this storage.

	Parameters:	name – the name to check.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
file_length(name)

	Returns the size (in bytes) of the given file in this storage.

	Parameters:	name – the name to check.

	Return type:	int [https://docs.python.org/2/library/functions.html#int]

	
file_modified(name)

	Returns the last-modified time of the given file in this storage (as
a “ctime” UNIX timestamp).

	Parameters:	name – the name to check.

	Returns:	a “ctime” number.

	
index_exists(indexname=None)

	Returns True if a non-empty index exists in this storage.

	Parameters:	indexname – the name of the index within the storage object. You
can use this option to store multiple indexes in the same storage.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
list()

	Returns a list of file names in this storage.

	Returns:	a list of strings

	
lock(name)

	Return a named lock object (implementing .acquire() and
.release() methods). Different storage implementations may use
different lock types with different guarantees. For example, the
RamStorage object uses Python thread locks, while the FileStorage
object uses filesystem-based locks that are valid across different
processes.

	Parameters:	name – a name for the lock.

	Returns:	a lock-like object.

	
open_file(name, *args, **kwargs)

	Opens a file with the given name in this storage.

	Parameters:	name – the name for the new file.

	Returns:	a whoosh.filedb.structfile.StructFile instance.

	
open_index(indexname='MAIN', schema=None, indexclass=None)

	Opens an existing index (created using create_index()) in this
storage.

>>> from whoosh.filedb.filestore import FileStorage
>>> st = FileStorage("indexdir")
>>> # Open an index in the storage
>>> ix = st.open_index()

	Parameters:	
	indexname – the name of the index within the storage object. You
can use this option to store multiple indexes in the same storage.

	schema – if you pass in a whoosh.fields.Schema object
using this argument, it will override the schema that was stored
with the index.

	indexclass – an optional custom Index sub-class to use to
open the index files. The default is
whoosh.index.FileIndex. This method will instantiate the
class with this storage object.

	Returns:	a whoosh.index.Index instance.

	
optimize()

	Optimizes the storage object. The meaning and cost of “optimizing”
will vary by implementation. For example, a database implementation
might run a garbage collection procedure on the underlying database.

	
rename_file(frm, to, safe=False)

	Renames a file in this storage.

	Parameters:	
	frm – The current name of the file.

	to – The new name for the file.

	safe – if True, raise an exception if a file with the new name
already exists.

	
temp_storage(name=None)

	Creates a new storage object for temporary files. You can call
Storage.destroy() on the new storage when you’re finished with
it.

	Parameters:	name – a name for the new storage. This may be optional or
required depending on the storage implementation.

	Return type:	Storage

Implementation classes

	
class whoosh.filedb.filestore.FileStorage(path, supports_mmap=True, readonly=False, debug=False)

	Storage object that stores the index as files in a directory on disk.

Prior to version 3, the initializer would raise an IOError if the directory
did not exist. As of version 3, the object does not check if the
directory exists at initialization. This change is to support using the
FileStorage.create() method.

	Parameters:	
	path – a path to a directory.

	supports_mmap – if True (the default), use the mmap module to
open memory mapped files. You can open the storage object with
supports_mmap=False to force Whoosh to open files normally
instead of with mmap.

	readonly – If True, the object will raise an exception if you
attempt to create or rename a file.

	
class whoosh.filedb.filestore.RamStorage

	Storage object that keeps the index in memory.

Helper functions

	
whoosh.filedb.filestore.copy_storage(sourcestore, deststore)

	Copies the files from the source storage object to the destination
storage object using shutil.copyfileobj.

	
whoosh.filedb.filestore.copy_to_ram(storage)

	Copies the given FileStorage object into a new RamStorage object.

	Return type:	RamStorage

Exceptions

	
exception whoosh.filedb.filestore.ReadOnlyError

	

filedb.filetables module

This module defines writer and reader classes for a fast, immutable
on-disk key-value database format. The current format is based heavily on
D. J. Bernstein’s CDB format (http://cr.yp.to/cdb.html).

Hash file

	
class whoosh.filedb.filetables.HashWriter(dbfile, magic='HSH3', hashtype=0)

	Implements a fast on-disk key-value store. This hash uses a two-level
hashing scheme, where a key is hashed, the low eight bits of the hash value
are used to index into one of 256 hash tables. This is basically the CDB
algorithm, but unlike CDB this object writes all data serially (it doesn’t
seek backwards to overwrite information at the end).

Also unlike CDB, this format uses 64-bit file pointers, so the file length
is essentially unlimited. However, each key and value must be less than
2 GB in length.

	Parameters:	
	dbfile – a StructFile object
to write to.

	magic – the format tag bytes to write at the start of the file.

	hashtype – an integer indicating which hashing algorithm to use.
Possible values are 0 (MD5), 1 (CRC32), or 2 (CDB hash).

	
add(key, value)

	Adds a key/value pair to the file. Note that keys DO NOT need to be
unique. You can store multiple values under the same key and retrieve
them using HashReader.all().

	
add_all(items)

	Convenience method to add a sequence of (key, value) pairs. This
is the same as calling HashWriter.add() on each pair in the
sequence.

	
class whoosh.filedb.filetables.HashReader(dbfile, length=None, magic='HSH3', startoffset=0)

	Reader for the fast on-disk key-value files created by
HashWriter.

	Parameters:	
	dbfile – a StructFile object
to read from.

	length – the length of the file data. This is necessary since the
hashing information is written at the end of the file.

	magic – the format tag bytes to look for at the start of the
file. If the file’s format tag does not match these bytes, the
object raises a FileFormatError exception.

	startoffset – the starting point of the file data.

	
all(key)

	Yields a sequence of values associated with the given key.

	
classmethod open(storage, name)

	Convenience method to open a hash file given a
whoosh.filedb.filestore.Storage object and a name. This takes
care of opening the file and passing its length to the initializer.

	
ranges_for_key(key)

	Yields a sequence of (datapos, datalength) tuples associated
with the given key.

Ordered Hash file

	
class whoosh.filedb.filetables.OrderedHashWriter(dbfile)

	Implements an on-disk hash, but requires that keys be added in order.
An OrderedHashReader can then look up “nearest keys” based on
the ordering.

	
class whoosh.filedb.filetables.OrderedHashReader(dbfile, length=None, magic='HSH3', startoffset=0)

	

	Parameters:	
	dbfile – a StructFile object
to read from.

	length – the length of the file data. This is necessary since the
hashing information is written at the end of the file.

	magic – the format tag bytes to look for at the start of the
file. If the file’s format tag does not match these bytes, the
object raises a FileFormatError exception.

	startoffset – the starting point of the file data.

filedb.structfile module

Classes

	
class whoosh.filedb.structfile.StructFile(fileobj, name=None, onclose=None)

	Returns a “structured file” object that wraps the given file object and
provides numerous additional methods for writing structured data, such as
“write_varint” and “write_long”.

	
close()

	Closes the wrapped file.

	
flush()

	Flushes the buffer of the wrapped file. This is a no-op if the
wrapped file does not have a flush method.

	
read_pickle()

	Reads a pickled object from the wrapped file.

	
read_string()

	Reads a string from the wrapped file.

	
read_svarint()

	Reads a variable-length encoded signed integer from the wrapped
file.

	
read_tagint()

	Reads a sometimes-compressed unsigned integer from the wrapped file.
This is similar to the varint methods but uses a less compressed but
faster format.

	
read_varint()

	Reads a variable-length encoded unsigned integer from the wrapped
file.

	
write_byte(n)

	Writes a single byte to the wrapped file, shortcut for
file.write(chr(n)).

	
write_pickle(obj, protocol=-1)

	Writes a pickled representation of obj to the wrapped file.

	
write_string(s)

	Writes a string to the wrapped file. This method writes the length
of the string first, so you can read the string back without having to
know how long it was.

	
write_svarint(i)

	Writes a variable-length signed integer to the wrapped file.

	
write_tagint(i)

	Writes a sometimes-compressed unsigned integer to the wrapped file.
This is similar to the varint methods but uses a less compressed but
faster format.

	
write_varint(i)

	Writes a variable-length unsigned integer to the wrapped file.

	
class whoosh.filedb.structfile.BufferFile(buf, name=None, onclose=None)

	

	
class whoosh.filedb.structfile.ChecksumFile(*args, **kwargs)

	

formats module

The classes in this module encode and decode posting information for a field.
The field format essentially determines what information is stored about each
occurance of a term.

Base class

	
class whoosh.formats.Format(field_boost=1.0, **options)

	Abstract base class representing a storage format for a field or vector.
Format objects are responsible for writing and reading the low-level
representation of a field. It controls what kind/level of information to
store about the indexed fields.

	Parameters:	field_boost – A constant boost factor to scale to the score
of all queries matching terms in this field.

	
decode_as(astype, valuestring)

	Interprets the encoded value string as ‘astype’, where ‘astype’ is
for example “frequency” or “positions”. This object must have a
corresponding decode_<astype>() method.

	
decoder(name)

	Returns the bound method for interpreting value as ‘name’,
where ‘name’ is for example “frequency” or “positions”. This
object must have a corresponding Format.decode_<name>() method.

	
supports(name)

	Returns True if this format supports interpreting its posting
value as ‘name’ (e.g. “frequency” or “positions”).

	
word_values(value, analyzer, **kwargs)

	Takes the text value to be indexed and yields a series of
(“tokentext”, frequency, weight, valuestring) tuples, where frequency
is the number of times “tokentext” appeared in the value, weight is the
weight (a float usually equal to frequency in the absence of per-term
boosts) and valuestring is encoded field-specific posting value for the
token. For example, in a Frequency format, the value string would be
the same as frequency; in a Positions format, the value string would
encode a list of token positions at which “tokentext” occured.

	Parameters:	
	value – The unicode text to index.

	analyzer – The analyzer to use to process the text.

Formats

	
class whoosh.formats.Existence(field_boost=1.0, **options)

	Only indexes whether a given term occurred in a given document; it does
not store frequencies or positions. This is useful for fields that should
be searchable but not scorable, such as file path.

Supports: frequency, weight (always reports frequency = 1).

	
class whoosh.formats.Frequency(field_boost=1.0, boost_as_freq=False, **options)

	Stores frequency information for each posting.

Supports: frequency, weight.

	Parameters:	field_boost – A constant boost factor to scale to the score of
all queries matching terms in this field.

	
class whoosh.formats.Positions(field_boost=1.0, **options)

	Stores position information in each posting, to allow phrase searching
and “near” queries.

Supports: frequency, weight, positions, position_boosts (always reports
position boost = 1.0).

	Parameters:	field_boost – A constant boost factor to scale to the score
of all queries matching terms in this field.

	
class whoosh.formats.Characters(field_boost=1.0, **options)

	Stores token position and character start and end information for each
posting.

Supports: frequency, weight, positions, position_boosts (always reports
position boost = 1.0), characters.

	Parameters:	field_boost – A constant boost factor to scale to the score
of all queries matching terms in this field.

	
class whoosh.formats.PositionBoosts(field_boost=1.0, **options)

	A format that stores positions and per-position boost information
in each posting.

Supports: frequency, weight, positions, position_boosts.

	Parameters:	field_boost – A constant boost factor to scale to the score
of all queries matching terms in this field.

	
class whoosh.formats.CharacterBoosts(field_boost=1.0, **options)

	A format that stores positions, character start and end, and
per-position boost information in each posting.

Supports: frequency, weight, positions, position_boosts, characters,
character_boosts.

	Parameters:	field_boost – A constant boost factor to scale to the score
of all queries matching terms in this field.

highlight module

The highlight module contains classes and functions for displaying short
excerpts from hit documents in the search results you present to the user, with
query terms highlighted.

The highlighting system has four main elements.

	Fragmenters chop up the original text into __fragments__, based on the
locations of matched terms in the text.

	Scorers assign a score to each fragment, allowing the system to rank the
best fragments by whatever criterion.

	Order functions control in what order the top-scoring fragments are
presented to the user. For example, you can show the fragments in the order
they appear in the document (FIRST) or show higher-scoring fragments first
(SCORE)

	Formatters turn the fragment objects into human-readable output, such as
an HTML string.

See How to create highlighted search result excerpts for more information.

See how to highlight terms in search results.

Manual highlighting

	
class whoosh.highlight.Highlighter(fragmenter=None, scorer=None, formatter=None, always_retokenize=False, order=<function FIRST>)

	

	
whoosh.highlight.highlight(text, terms, analyzer, fragmenter, formatter, top=3, scorer=None, minscore=1, order=<function FIRST>, mode='query')

	

Fragmenters

	
class whoosh.highlight.Fragmenter

	
	
fragment_matches(text, matched_tokens)

	Yields Fragment objects based on the text and the matched
terms.

	Parameters:	
	text – the string being highlighted.

	matched_tokens – a list of analysis.Token objects
representing the term matches in the string.

	
fragment_tokens(text, all_tokens)

	Yields Fragment objects based on the tokenized text.

	Parameters:	
	text – the string being highlighted.

	all_tokens – an iterator of analysis.Token
objects from the string.

	
must_retokenize()

	Returns True if this fragmenter requires retokenized text.

If this method returns True, the fragmenter’s fragment_tokens
method will be called with an iterator of ALL tokens from the text,
with the tokens for matched terms having the matched attribute set
to True.

If this method returns False, the fragmenter’s fragment_matches
method will be called with a LIST of matching tokens.

	
class whoosh.highlight.WholeFragmenter(charlimit=32768)

	Doesn’t fragment the token stream. This object just returns the entire
entire stream as one “fragment”. This is useful if you want to highlight
the entire text.

Note that even if you use the WholeFragmenter, the highlight code will
return no fragment if no terms matched in the given field. To return the
whole fragment even in that case, call highlights() with minscore=0:

Query where no terms match in the "text" field
q = query.Term("tag", "new")

r = mysearcher.search(q)
r.fragmenter = highlight.WholeFragmenter()
r.formatter = highlight.UppercaseFormatter()
Since no terms in the "text" field matched, we get no fragments back
assert r[0].highlights("text") == ""

If we lower the minimum score to 0, we get a fragment even though it
has no matching terms
assert r[0].highlights("text", minscore=0) == "This is the text field."

	
class whoosh.highlight.SentenceFragmenter(maxchars=200, sentencechars='.!?', charlimit=32768)

	Breaks the text up on sentence end punctuation characters
(”.”, ”!”, or ”?”). This object works by looking in the original text for a
sentence end as the next character after each token’s ‘endchar’.

When highlighting with this fragmenter, you should use an analyzer that
does NOT remove stop words, for example:

sa = StandardAnalyzer(stoplist=None)

	Parameters:	maxchars – The maximum number of characters allowed in a
fragment.

	
class whoosh.highlight.ContextFragmenter(maxchars=200, surround=20, charlimit=32768)

	Looks for matched terms and aggregates them with their surrounding
context.

	Parameters:	
	maxchars – The maximum number of characters allowed in a
fragment.

	surround – The number of extra characters of context to add both
before the first matched term and after the last matched term.

	
class whoosh.highlight.PinpointFragmenter(maxchars=200, surround=20, autotrim=False, charlimit=32768)

	This is a NON-RETOKENIZING fragmenter. It builds fragments from the
positions of the matched terms.

	Parameters:	
	maxchars – The maximum number of characters allowed in a
fragment.

	surround – The number of extra characters of context to add both
before the first matched term and after the last matched term.

	autotrim – automatically trims text before the first space and
after the last space in the fragments, to try to avoid truncated
words at the start and end. For short fragments or fragments with
long runs between spaces this may give strange results.

Scorers

	
class whoosh.highlight.FragmentScorer

	

	
class whoosh.highlight.BasicFragmentScorer

	

Formatters

	
class whoosh.highlight.UppercaseFormatter(between='...')

	Returns a string in which the matched terms are in UPPERCASE.

	Parameters:	between – the text to add between fragments.

	
class whoosh.highlight.HtmlFormatter(tagname='strong', between='...', classname='match', termclass='term', maxclasses=5, attrquote='"')

	Returns a string containing HTML formatting around the matched terms.

This formatter wraps matched terms in an HTML element with two class names.
The first class name (set with the constructor argument classname) is
the same for each match. The second class name (set with the constructor
argument termclass is different depending on which term matched. This
allows you to give different formatting (for example, different background
colors) to the different terms in the excerpt.

>>> hf = HtmlFormatter(tagname="span", classname="match", termclass="term")
>>> hf(mytext, myfragments)
"The template geometry is..."

This object maintains a dictionary mapping terms to HTML class names (e.g.
term0 and term1 above), so that multiple excerpts will use the same
class for the same term. If you want to re-use the same HtmlFormatter
object with different searches, you should call HtmlFormatter.clear()
between searches to clear the mapping.

	Parameters:	
	tagname – the tag to wrap around matching terms.

	between – the text to add between fragments.

	classname – the class name to add to the elements wrapped around
matching terms.

	termclass – the class name prefix for the second class which is
different for each matched term.

	maxclasses – the maximum number of term classes to produce. This
limits the number of classes you have to define in CSS by recycling
term class names. For example, if you set maxclasses to 3 and have
5 terms, the 5 terms will use the CSS classes term0, term1,
term2, term0, term1.

	
class whoosh.highlight.GenshiFormatter(qname='strong', between='...')

	Returns a Genshi event stream containing HTML formatting around the
matched terms.

	Parameters:	
	qname – the QName for the tag to wrap around matched terms.

	between – the text to add between fragments.

Utility classes

	
class whoosh.highlight.Fragment(text, matches, startchar=0, endchar=-1)

	Represents a fragment (extract) from a hit document. This object is
mainly used to keep track of the start and end points of the fragment and
the “matched” character ranges inside; it does not contain the text of the
fragment or do much else.

The useful attributes are:

	Fragment.text

	The entire original text from which this fragment is taken.

	Fragment.matches

	An ordered list of objects representing the matched terms in the
fragment. These objects have startchar and endchar attributes.

	Fragment.startchar

	The index of the first character in the fragment.

	Fragment.endchar

	The index of the last character in the fragment.

	Fragment.matched_terms

	A set of the text of the matched terms in the fragment (if
available).

	Parameters:	
	text – the source text of the fragment.

	matches – a list of objects which have startchar and
endchar attributes, and optionally a text attribute.

	startchar – the index into text at which the fragment starts.
The default is 0.

	endchar – the index into text at which the fragment ends.
The default is -1, which is interpreted as the length of text.

support.bitvector module

An implementation of an object that acts like a collection of on/off bits.

Base classes

	
class whoosh.idsets.DocIdSet

	Base class for a set of positive integers, implementing a subset of the
built-in set type’s interface with extra docid-related methods.

This is a superclass for alternative set implementations to the built-in
set which are more memory-efficient and specialized toward storing
sorted lists of positive integers, though they will inevitably be slower
than set for most operations since they’re pure Python.

	
after(i)

	Returns the next integer in the set after i, or None.

	
before(i)

	Returns the previous integer in the set before i, or None.

	
first()

	Returns the first (lowest) integer in the set.

	
invert_update(size)

	Updates the set in-place to contain numbers in the range
[0 - size) except numbers that are in this set.

	
last()

	Returns the last (highest) integer in the set.

	
class whoosh.idsets.BaseBitSet

	

Implementation classes

	
class whoosh.idsets.BitSet(source=None, size=0)

	A DocIdSet backed by an array of bits. This can also be useful as a bit
array (e.g. for a Bloom filter). It is much more memory efficient than a
large built-in set of integers, but wastes memory for sparse sets.

	Parameters:	
	maxsize – the maximum size of the bit array.

	source – an iterable of positive integers to add to this set.

	bits – an array of unsigned bytes (“B”) to use as the underlying
bit array. This is used by some of the object’s methods.

	
class whoosh.idsets.OnDiskBitSet(dbfile, basepos, bytecount)

	A DocIdSet backed by an array of bits on disk.

>>> st = RamStorage()
>>> f = st.create_file("test.bin")
>>> bs = BitSet([1, 10, 15, 7, 2])
>>> bytecount = bs.to_disk(f)
>>> f.close()
>>> # ...
>>> f = st.open_file("test.bin")
>>> odbs = OnDiskBitSet(f, bytecount)
>>> list(odbs)
[1, 2, 7, 10, 15]

	Parameters:	
	dbfile – a StructFile object
to read from.

	basepos – the base position of the bytes in the given file.

	bytecount – the number of bytes to use for the bit array.

	
class whoosh.idsets.SortedIntSet(source=None, typecode='I')

	A DocIdSet backed by a sorted array of integers.

	
class whoosh.idsets.MultiIdSet(idsets, offsets)

	Wraps multiple SERIAL sub-DocIdSet objects and presents them as an
aggregated, read-only set.

	Parameters:	
	idsets – a list of DocIdSet objects.

	offsets – a list of offsets corresponding to the DocIdSet objects
in idsets.

index module

Contains the main functions/classes for creating, maintaining, and using
an index.

Functions

	
whoosh.index.create_in(dirname, schema, indexname=None)

	Convenience function to create an index in a directory. Takes care of
creating a FileStorage object for you.

	Parameters:	
	dirname – the path string of the directory in which to create the
index.

	schema – a whoosh.fields.Schema object describing the
index’s fields.

	indexname – the name of the index to create; you only need to specify
this if you are creating multiple indexes within the same storage
object.

	Returns:	Index

	
whoosh.index.open_dir(dirname, indexname=None, readonly=False, schema=None)

	Convenience function for opening an index in a directory. Takes care of
creating a FileStorage object for you. dirname is the filename of the
directory in containing the index. indexname is the name of the index to
create; you only need to specify this if you have multiple indexes within
the same storage object.

	Parameters:	
	dirname – the path string of the directory in which to create the
index.

	indexname – the name of the index to create; you only need to specify
this if you have multiple indexes within the same storage object.

	
whoosh.index.exists_in(dirname, indexname=None)

	Returns True if dirname contains a Whoosh index.

	Parameters:	
	dirname – the file path of a directory.

	indexname – the name of the index. If None, the default index name is
used.

	
whoosh.index.exists(storage, indexname=None)

	Deprecated; use storage.index_exists().

	Parameters:	
	storage – a store.Storage object.

	indexname – the name of the index. If None, the default index name is
used.

	
whoosh.index.version_in(dirname, indexname=None)

	Returns a tuple of (release_version, format_version), where
release_version is the release version number of the Whoosh code that
created the index – e.g. (0, 1, 24) – and format_version is the version
number of the on-disk format used for the index – e.g. -102.

You should avoid attaching significance to the second number (the index
version). This is simply a version number for the TOC file and probably
should not have been exposed in a public interface. The best way to check
if the current version of Whoosh can open an index is to actually try to
open it and see if it raises a whoosh.index.IndexVersionError exception.

Note that the release and format version are available as attributes on the
Index object in Index.release and Index.version.

	Parameters:	
	dirname – the file path of a directory containing an index.

	indexname – the name of the index. If None, the default index name is
used.

	Returns:	((major_ver, minor_ver, build_ver), format_ver)

	
whoosh.index.version(storage, indexname=None)

	Returns a tuple of (release_version, format_version), where
release_version is the release version number of the Whoosh code that
created the index – e.g. (0, 1, 24) – and format_version is the version
number of the on-disk format used for the index – e.g. -102.

You should avoid attaching significance to the second number (the index
version). This is simply a version number for the TOC file and probably
should not have been exposed in a public interface. The best way to check
if the current version of Whoosh can open an index is to actually try to
open it and see if it raises a whoosh.index.IndexVersionError exception.

Note that the release and format version are available as attributes on the
Index object in Index.release and Index.version.

	Parameters:	
	storage – a store.Storage object.

	indexname – the name of the index. If None, the default index name is
used.

	Returns:	((major_ver, minor_ver, build_ver), format_ver)

Base class

	
class whoosh.index.Index

	Represents an indexed collection of documents.

	
add_field(fieldname, fieldspec)

	Adds a field to the index’s schema.

	Parameters:	
	fieldname – the name of the field to add.

	fieldspec – an instantiated whoosh.fields.FieldType
object.

	
close()

	Closes any open resources held by the Index object itself. This may
not close all resources being used everywhere, for example by a
Searcher object.

	
doc_count()

	Returns the total number of UNDELETED documents in this index.

	
doc_count_all()

	Returns the total number of documents, DELETED OR UNDELETED,
in this index.

	
field_length(fieldname)

	Returns the total length of the field across all documents.

	
is_empty()

	Returns True if this index is empty (that is, it has never had any
documents successfully written to it.

	
last_modified()

	Returns the last modified time of the index, or -1 if the backend
doesn’t support last-modified times.

	
latest_generation()

	Returns the generation number of the latest generation of this
index, or -1 if the backend doesn’t support versioning.

	
max_field_length(fieldname)

	Returns the maximum length of the field across all documents.

	
optimize()

	Optimizes this index, if necessary.

	
reader(reuse=None)

	Returns an IndexReader object for this index.

	Parameters:	reuse – an existing reader. Some implementations may recycle
resources from this existing reader to create the new reader. Note
that any resources in the “recycled” reader that are not used by
the new reader will be CLOSED, so you CANNOT use it afterward.

	Return type:	whoosh.reading.IndexReader

	
refresh()

	Returns a new Index object representing the latest generation
of this index (if this object is the latest generation, or the backend
doesn’t support versioning, returns self).

	Returns:	Index

	
remove_field(fieldname)

	Removes the named field from the index’s schema. Depending on the
backend implementation, this may or may not actually remove existing
data for the field from the index. Optimizing the index should always
clear out existing data for a removed field.

	
searcher(**kwargs)

	Returns a Searcher object for this index. Keyword arguments are
passed to the Searcher object’s constructor.

	Return type:	whoosh.searching.Searcher

	
up_to_date()

	Returns True if this object represents the latest generation of
this index. Returns False if this object is not the latest generation
(that is, someone else has updated the index since you opened this
object).

	
writer(**kwargs)

	Returns an IndexWriter object for this index.

	Return type:	whoosh.writing.IndexWriter

Implementation

	
class whoosh.index.FileIndex(storage, schema=None, indexname='MAIN')

	

Exceptions

	
exception whoosh.index.LockError

	

	
exception whoosh.index.IndexError

	Generic index error.

	
exception whoosh.index.IndexVersionError(msg, version, release=None)

	Raised when you try to open an index using a format that the current
version of Whoosh cannot read. That is, when the index you’re trying to
open is either not backward or forward compatible with this version of
Whoosh.

	
exception whoosh.index.OutOfDateError

	Raised when you try to commit changes to an index which is not the
latest generation.

	
exception whoosh.index.EmptyIndexError

	Raised when you try to work with an index that has no indexed terms.

lang.morph_en module

Contains the variations() function for expanding an English word into multiple
variations by programatically adding and removing suffixes.

Translated to Python from the com.sun.labs.minion.lexmorph.LiteMorph_en
class of Sun’s Minion search engine [https://minion.dev.java.net/].

	
whoosh.lang.morph_en.variations(word)

	Given an English word, returns a collection of morphological variations
on the word by algorithmically adding and removing suffixes. The variation
list may contain non-words (e.g. render -> renderment).

>>> variations("pull")
set(['pull', 'pullings', 'pullnesses', 'pullful', 'pullment', 'puller', ...])

lang.porter module

Reimplementation of the
Porter stemming algorithm [http://tartarus.org/~martin/PorterStemmer/]
in Python.

In my quick tests, this implementation about 3.5 times faster than the
seriously weird Python linked from the official page.

	
whoosh.lang.porter.stem(w)

	Uses the Porter stemming algorithm to remove suffixes from English
words.

>>> stem("fundamentally")
"fundament"

lang.wordnet module

This module contains low-level functions and a high-level class for parsing
the prolog file “wn_s.pl” from the WordNet prolog download
into an object suitable for looking up synonyms and performing query expansion.

http://wordnetcode.princeton.edu/3.0/WNprolog-3.0.tar.gz

Thesaurus

	
class whoosh.lang.wordnet.Thesaurus

	Represents the WordNet synonym database, either loaded into memory
from the wn_s.pl Prolog file, or stored on disk in a Whoosh index.

This class allows you to parse the prolog file “wn_s.pl” from the WordNet prolog
download into an object suitable for looking up synonyms and performing query
expansion.

http://wordnetcode.princeton.edu/3.0/WNprolog-3.0.tar.gz

To load a Thesaurus object from the wn_s.pl file...

>>> t = Thesaurus.from_filename("wn_s.pl")

To save the in-memory Thesaurus to a Whoosh index...

>>> from whoosh.filedb.filestore import FileStorage
>>> fs = FileStorage("index")
>>> t.to_storage(fs)

To load a Thesaurus object from a Whoosh index...

>>> t = Thesaurus.from_storage(fs)

The Thesaurus object is thus usable in two ways:

	Parse the wn_s.pl file into memory (Thesaurus.from_*) and then look up
synonyms in memory. This has a startup cost for parsing the file, and uses
quite a bit of memory to store two large dictionaries, however synonym
look-ups are very fast.

	Parse the wn_s.pl file into memory (Thesaurus.from_filename) then save it to
an index (to_storage). From then on, open the thesaurus from the saved
index (Thesaurus.from_storage). This has a large cost for storing the index,
but after that it is faster to open the Thesaurus (than re-parsing the file)
but slightly slower to look up synonyms.

Here are timings for various tasks on my (fast) Windows machine, which might
give an idea of relative costs for in-memory vs. on-disk.

	Task
	Approx. time (s)

	Parsing the wn_s.pl file
	1.045

	Saving to an on-disk index
	13.084

	Loading from an on-disk index
	0.082

	Look up synonyms for “light” (in memory)
	0.0011

	Look up synonyms for “light” (loaded from disk)
	0.0028

Basically, if you can afford spending the memory necessary to parse the
Thesaurus and then cache it, it’s faster. Otherwise, use an on-disk index.

	
classmethod from_file(fileobj)

	Creates a Thesaurus object from the given file-like object, which should
contain the WordNet wn_s.pl file.

>>> f = open("wn_s.pl")
>>> t = Thesaurus.from_file(f)
>>> t.synonyms("hail")
['acclaim', 'come', 'herald']

	
classmethod from_filename(filename)

	Creates a Thesaurus object from the given filename, which should
contain the WordNet wn_s.pl file.

>>> t = Thesaurus.from_filename("wn_s.pl")
>>> t.synonyms("hail")
['acclaim', 'come', 'herald']

	
classmethod from_storage(storage, indexname='THES')

	Creates a Thesaurus object from the given storage object,
which should contain an index created by Thesaurus.to_storage().

>>> from whoosh.filedb.filestore import FileStorage
>>> fs = FileStorage("index")
>>> t = Thesaurus.from_storage(fs)
>>> t.synonyms("hail")
['acclaim', 'come', 'herald']

	Parameters:	
	storage – A whoosh.store.Storage object from
which to load the index.

	indexname – A name for the index. This allows you to
store multiple indexes in the same storage object.

	
synonyms(word)

	Returns a list of synonyms for the given word.

>>> thesaurus.synonyms("hail")
['acclaim', 'come', 'herald']

	
to_storage(storage, indexname='THES')

	Creates am index in the given storage object from the
synonyms loaded from a WordNet file.

>>> from whoosh.filedb.filestore import FileStorage
>>> fs = FileStorage("index")
>>> t = Thesaurus.from_filename("wn_s.pl")
>>> t.to_storage(fs)

	Parameters:	
	storage – A whoosh.store.Storage object in
which to save the index.

	indexname – A name for the index. This allows you to
store multiple indexes in the same storage object.

Low-level functions

	
whoosh.lang.wordnet.parse_file(f)

	Parses the WordNet wn_s.pl prolog file and returns two dictionaries:
word2nums and num2words.

	
whoosh.lang.wordnet.synonyms(word2nums, num2words, word)

	Uses the word2nums and num2words dicts to look up synonyms
for the given word. Returns a list of synonym strings.

	
whoosh.lang.wordnet.make_index(storage, indexname, word2nums, num2words)

	Creates a Whoosh index in the given storage object containing
synonyms taken from word2nums and num2words. Returns the Index
object.

matching module

Matchers

	
class whoosh.matching.Matcher

	Base class for all matchers.

	
all_ids()

	Returns a generator of all IDs in the matcher.

What this method returns for a matcher that has already read some
postings (whether it only yields the remaining postings or all postings
from the beginning) is undefined, so it’s best to only use this method
on fresh matchers.

	
all_items()

	Returns a generator of all (ID, encoded value) pairs in the matcher.

What this method returns for a matcher that has already read some
postings (whether it only yields the remaining postings or all postings
from the beginning) is undefined, so it’s best to only use this method
on fresh matchers.

	
block_quality()

	Returns a quality measurement of the current block of postings,
according to the current weighting algorithm. Raises
NoQualityAvailable if the matcher or weighting do not support
quality measurements.

	
children()

	Returns an (possibly empty) list of the submatchers of this
matcher.

	
copy()

	Returns a copy of this matcher.

	
depth()

	Returns the depth of the tree under this matcher, or 0 if this
matcher does not have any children.

	
id()

	Returns the ID of the current posting.

	
is_active()

	Returns True if this matcher is still “active”, that is, it has not
yet reached the end of the posting list.

	
items_as(astype)

	Returns a generator of all (ID, decoded value) pairs in the matcher.

What this method returns for a matcher that has already read some
postings (whether it only yields the remaining postings or all postings
from the beginning) is undefined, so it’s best to only use this method
on fresh matchers.

	
matching_terms(id=None)

	Returns an iterator of ("fieldname", "termtext") tuples for the
currently matching term matchers in this tree.

	
max_quality()

	Returns the maximum possible quality measurement for this matcher,
according to the current weighting algorithm. Raises
NoQualityAvailable if the matcher or weighting do not support
quality measurements.

	
next()

	Moves this matcher to the next posting.

	
replace(minquality=0)

	Returns a possibly-simplified version of this matcher. For example,
if one of the children of a UnionMatcher is no longer active, calling
this method on the UnionMatcher will return the other child.

	
reset()

	Returns to the start of the posting list.

Note that reset() may not do what you expect after you call
Matcher.replace(), since this can mean calling reset() not on
the original matcher, but on an optimized replacement.

	
score()

	Returns the score of the current posting.

	
skip_to(id)

	Moves this matcher to the first posting with an ID equal to or
greater than the given ID.

	
skip_to_quality(minquality)

	Moves this matcher to the next block with greater than the given
minimum quality value.

	
spans()

	Returns a list of Span objects for the
matches in this document. Raises an exception if the field being
searched does not store positions.

	
supports(astype)

	Returns True if the field’s format supports the named data type,
for example ‘frequency’ or ‘characters’.

	
supports_block_quality()

	Returns True if this matcher supports the use of quality and
block_quality.

	
term()

	Returns a ("fieldname", "termtext") tuple for the term this
matcher matches, or None if this matcher is not a term matcher.

	
term_matchers()

	Returns an iterator of term matchers in this tree.

	
value()

	Returns the encoded value of the current posting.

	
value_as(astype)

	Returns the value(s) of the current posting as the given type.

	
weight()

	Returns the weight of the current posting.

	
whoosh.matching.NullMatcher

	

	
class whoosh.matching.ListMatcher(ids, weights=None, values=None, format=None, scorer=None, position=0, all_weights=None, term=None, terminfo=None)

	Synthetic matcher backed by a list of IDs.

	Parameters:	
	ids – a list of doc IDs.

	weights – a list of weights corresponding to the list of IDs.
If this argument is not supplied, a list of 1.0 values is used.

	values – a list of encoded values corresponding to the list of
IDs.

	format – a whoosh.formats.Format object representing the
format of the field.

	scorer – a whoosh.scoring.BaseScorer object for scoring
the postings.

	term – a ("fieldname", "text") tuple, or None if this is not
a term matcher.

	
class whoosh.matching.WrappingMatcher(child, boost=1.0)

	Base class for matchers that wrap sub-matchers.

	
class whoosh.matching.MultiMatcher(matchers, idoffsets, scorer=None, current=0)

	Serializes the results of a list of sub-matchers.

	Parameters:	
	matchers – a list of Matcher objects.

	idoffsets – a list of offsets corresponding to items in the
matchers list.

	
class whoosh.matching.FilterMatcher(child, ids, exclude=False, boost=1.0)

	Filters the postings from the wrapped based on whether the IDs are
present in or absent from a set.

	Parameters:	
	child – the child matcher.

	ids – a set of IDs to filter by.

	exclude – by default, only IDs from the wrapped matcher that are
in the set are used. If this argument is True, only IDs from
the wrapped matcher that are not in the set are used.

	
class whoosh.matching.BiMatcher(a, b)

	Base class for matchers that combine the results of two sub-matchers in
some way.

	
class whoosh.matching.AdditiveBiMatcher(a, b)

	Base class for binary matchers where the scores of the sub-matchers are
added together.

	
class whoosh.matching.UnionMatcher(a, b)

	Matches the union (OR) of the postings in the two sub-matchers.

	
class whoosh.matching.DisjunctionMaxMatcher(a, b, tiebreak=0.0)

	Matches the union (OR) of two sub-matchers. Where both sub-matchers
match the same posting, returns the weight/score of the higher-scoring
posting.

	
class whoosh.matching.IntersectionMatcher(a, b)

	Matches the intersection (AND) of the postings in the two sub-matchers.

	
class whoosh.matching.AndNotMatcher(a, b)

	Matches the postings in the first sub-matcher that are NOT present in
the second sub-matcher.

	
class whoosh.matching.InverseMatcher(child, limit, missing=None, weight=1.0, id=0)

	Synthetic matcher, generates postings that are NOT present in the
wrapped matcher.

	
class whoosh.matching.RequireMatcher(a, b)

	Matches postings that are in both sub-matchers, but only uses scores
from the first.

	
class whoosh.matching.AndMaybeMatcher(a, b)

	Matches postings in the first sub-matcher, and if the same posting is
in the second sub-matcher, adds their scores.

	
class whoosh.matching.ConstantScoreMatcher(score=1.0)

	

Exceptions

	
exception whoosh.matching.ReadTooFar

	Raised when next() or
skip_to() are called on an inactive
matcher.

	
exception whoosh.matching.NoQualityAvailable

	Raised when quality methods are called on a matcher that does not
support block quality optimizations.

qparser module

Parser object

	
class whoosh.qparser.QueryParser(fieldname, schema, plugins=None, termclass=<class 'whoosh.query.terms.Term'>, phraseclass=<class 'whoosh.query.positional.Phrase'>, group=<class 'whoosh.qparser.syntax.AndGroup'>)

	A hand-written query parser built on modular plug-ins. The default
configuration implements a powerful fielded query language similar to
Lucene’s.

You can use the plugins argument when creating the object to override
the default list of plug-ins, and/or use add_plugin() and/or
remove_plugin_class() to change the plug-ins included in the parser.

>>> from whoosh import qparser
>>> parser = qparser.QueryParser("content", schema)
>>> parser.remove_plugin_class(qparser.WildcardPlugin)
>>> parser.add_plugin(qparser.PrefixPlugin())
>>> parser.parse(u"hello there")
And([Term("content", u"hello"), Term("content", u"there")])

	Parameters:	
	fieldname – the default field – the parser uses this as the
field for any terms without an explicit field.

	schema – a whoosh.fields.Schema object to use when
parsing. The appropriate fields in the schema will be used to
tokenize terms/phrases before they are turned into query objects.
You can specify None for the schema to create a parser that does
not analyze the text of the query, usually for testing purposes.

	plugins – a list of plugins to use. WhitespacePlugin is
automatically included, do not put it in this list. This overrides
the default list of plugins. Classes in the list will be
automatically instantiated.

	termclass – the query class to use for individual search terms.
The default is whoosh.query.Term.

	phraseclass – the query class to use for phrases. The default
is whoosh.query.Phrase.

	group – the default grouping. AndGroup makes terms required
by default. OrGroup makes terms optional by default.

	
add_plugin(pin)

	Adds the given plugin to the list of plugins in this parser.

	
add_plugins(pins)

	Adds the given list of plugins to the list of plugins in this
parser.

	
default_set()

	Returns the default list of plugins to use.

	
filterize(nodes, debug=False)

	Takes a group of nodes and runs the filters provided by the parser’s
plugins.

	
filters()

	Returns a priorized list of filter functions provided by the
parser’s currently configured plugins.

	
multitoken_query(spec, texts, fieldname, termclass, boost)

	Returns a query for multiple texts. This method implements the
intention specified in the field’s multitoken_query attribute,
which specifies what to do when strings that look like single terms
to the parser turn out to yield multiple tokens when analyzed.

	Parameters:	
	spec – a string describing how to join the text strings into a
query. This is usually the value of the field’s
multitoken_query attribute.

	texts – a list of token strings.

	fieldname – the name of the field.

	termclass – the query class to use for single terms.

	boost – the original term’s boost in the query string, should be
applied to the returned query object.

	
parse(text, normalize=True, debug=False)

	Parses the input string and returns a whoosh.query.Query
object/tree.

	Parameters:	
	text – the unicode string to parse.

	normalize – whether to call normalize() on the query object/tree
before returning it. This should be left on unless you’re trying to
debug the parser output.

	Return type:	whoosh.query.Query

	
process(text, pos=0, debug=False)

	Returns a group of syntax nodes corresponding to the given text,
tagged by the plugin Taggers and filtered by the plugin filters.

	Parameters:	
	text – the text to tag.

	pos – the position in the text to start tagging at.

	
remove_plugin(pi)

	Removes the given plugin object from the list of plugins in this
parser.

	
remove_plugin_class(cls)

	Removes any plugins of the given class from this parser.

	
replace_plugin(plugin)

	Removes any plugins of the class of the given plugin and then adds
it. This is a convenience method to keep from having to call
remove_plugin_class followed by add_plugin each time you want
to reconfigure a default plugin.

>>> qp = qparser.QueryParser("content", schema)
>>> qp.replace_plugin(qparser.NotPlugin("(^|)-"))

	
tag(text, pos=0, debug=False)

	Returns a group of syntax nodes corresponding to the given text,
created by matching the Taggers provided by the parser’s plugins.

	Parameters:	
	text – the text to tag.

	pos – the position in the text to start tagging at.

	
taggers()

	Returns a priorized list of tagger objects provided by the parser’s
currently configured plugins.

	
term_query(fieldname, text, termclass, boost=1.0, tokenize=True, removestops=True)

	Returns the appropriate query object for a single term in the query
string.

Pre-made configurations

The following functions return pre-configured QueryParser objects.

	
whoosh.qparser.MultifieldParser(fieldnames, schema, fieldboosts=None, **kwargs)

	Returns a QueryParser configured to search in multiple fields.

Instead of assigning unfielded clauses to a default field, this parser
transforms them into an OR clause that searches a list of fields. For
example, if the list of multi-fields is “f1”, “f2” and the query string is
“hello there”, the class will parse “(f1:hello OR f2:hello) (f1:there OR
f2:there)”. This is very useful when you have two textual fields (e.g.
“title” and “content”) you want to search by default.

	Parameters:	
	fieldnames – a list of field names to search.

	fieldboosts – an optional dictionary mapping field names to boosts.

	
whoosh.qparser.SimpleParser(fieldname, schema, **kwargs)

	Returns a QueryParser configured to support only +, -, and phrase
syntax.

	
whoosh.qparser.DisMaxParser(fieldboosts, schema, tiebreak=0.0, **kwargs)

	Returns a QueryParser configured to support only +, -, and phrase
syntax, and which converts individual terms into DisjunctionMax queries
across a set of fields.

	Parameters:	fieldboosts – a dictionary mapping field names to boosts.

Plug-ins

	
class whoosh.qparser.Plugin

	Base class for parser plugins.

	
filters(parser)

	Should return a list of (filter_function, priority) tuples to
add to parser. Lower priority numbers run first.

Filter functions will be called with (parser, groupnode) and should
return a group node.

	
taggers(parser)

	Should return a list of (Tagger, priority) tuples to add to the
syntax the parser understands. Lower priorities run first.

	
class whoosh.qparser.SingleQuotePlugin(expr=None)

	Adds the ability to specify single “terms” containing spaces by
enclosing them in single quotes.

	
class whoosh.qparser.PrefixPlugin(expr=None)

	Adds the ability to specify prefix queries by ending a term with an
asterisk.

This plugin is useful if you want the user to be able to create prefix but
not wildcard queries (for performance reasons). If you are including the
wildcard plugin, you should not include this plugin as well.

>>> qp = qparser.QueryParser("content", myschema)
>>> qp.remove_plugin_class(qparser.WildcardPlugin)
>>> qp.add_plugin(qparser.PrefixPlugin())
>>> q = qp.parse("pre*")

	
class whoosh.qparser.WildcardPlugin(expr=None)

	

	
class whoosh.qparser.RegexPlugin(expr=None)

	Adds the ability to specify regular expression term queries.

The default syntax for a regular expression term is r"termexpr".

>>> qp = qparser.QueryParser("content", myschema)
>>> qp.add_plugin(qparser.RegexPlugin())
>>> q = qp.parse('foo title:r"bar+"')

	
class whoosh.qparser.BoostPlugin(expr=None)

	Adds the ability to boost clauses of the query using the circumflex.

>>> qp = qparser.QueryParser("content", myschema)
>>> q = qp.parse("hello there^2")

	
class whoosh.qparser.GroupPlugin(openexpr='[(]', closeexpr='[)]')

	Adds the ability to group clauses using parentheses.

	
class whoosh.qparser.EveryPlugin(expr=None)

	

	
class whoosh.qparser.FieldsPlugin(expr='(?P<text>\w+|[*]):', remove_unknown=True)

	Adds the ability to specify the field of a clause.

	Parameters:	
	expr – the regular expression to use for tagging fields.

	remove_unknown – if True, converts field specifications for
fields that aren’t in the schema into regular text.

	
class whoosh.qparser.PhrasePlugin(expr='"(?P<text>.*?)"(~(?P<slop>[1-9][0-9]*))?')

	Adds the ability to specify phrase queries inside double quotes.

	
class whoosh.qparser.RangePlugin(expr=None, excl_start='{', excl_end='}')

	Adds the ability to specify term ranges.

	
class whoosh.qparser.OperatorsPlugin(ops=None, clean=False, And='(?<=\s)AND(?=\s)', Or='(?<=\s)OR(?=\s)', AndNot='(?<=\s)ANDNOT(?=\s)', AndMaybe='(?<=\s)ANDMAYBE(?=\s)', Not='(^|(?<=(\s|[()])))NOT(?=\s)', Require='(^|(?<=\s))REQUIRE(?=\s)')

	By default, adds the AND, OR, ANDNOT, ANDMAYBE, and NOT operators to
the parser syntax. This plugin scans the token stream for subclasses of
Operator and calls their Operator.make_group() methods
to allow them to manipulate the stream.

There are two levels of configuration available.

The first level is to change the regular expressions of the default
operators, using the And, Or, AndNot, AndMaybe, and/or
Not keyword arguments. The keyword value can be a pattern string or
a compiled expression, or None to remove the operator:

qp = qparser.QueryParser("content", schema)
cp = qparser.OperatorsPlugin(And="&", Or="\|", AndNot="&!",
 AndMaybe="&~", Not=None)
qp.replace_plugin(cp)

You can also specify a list of (OpTagger, priority) pairs as the first
argument to the initializer to use custom operators. See Creating custom operators
for more information on this.

	
class whoosh.qparser.PlusMinusPlugin(plusexpr='\+', minusexpr='-')

	Adds the ability to use + and - in a flat OR query to specify required
and prohibited terms.

This is the basis for the parser configuration returned by
SimpleParser().

	
class whoosh.qparser.GtLtPlugin(expr=None)

	Allows the user to use greater than/less than symbols to create range
queries:

a:>100 b:<=z c:>=-1.4 d:<mz

This is the equivalent of:

a:{100 to] b:[to z] c:[-1.4 to] d:[to mz}

The plugin recognizes >, <, >=, <=, =>, and =<
after a field specifier. The field specifier is required. You cannot do the
following:

>100

This plugin requires the FieldsPlugin and RangePlugin to work.

	
class whoosh.qparser.MultifieldPlugin(fieldnames, fieldboosts=None, group=<class 'whoosh.qparser.syntax.OrGroup'>)

	Converts any unfielded terms into OR clauses that search for the
term in a specified list of fields.

>>> qp = qparser.QueryParser(None, myschema)
>>> qp.add_plugin(qparser.MultifieldPlugin(["a", "b"])
>>> qp.parse("alfa c:bravo")
And([Or([Term("a", "alfa"), Term("b", "alfa")]), Term("c", "bravo")])

This plugin is the basis for the MultifieldParser.

	Parameters:	
	fieldnames – a list of fields to search.

	fieldboosts – an optional dictionary mapping field names to
a boost to use for that field.

	group – the group to use to relate the fielded terms to each
other.

	
class whoosh.qparser.FieldAliasPlugin(fieldmap)

	Adds the ability to use “aliases” of fields in the query string.

This plugin is useful for allowing users of languages that can’t be
represented in ASCII to use field names in their own language, and
translate them into the “real” field names, which must be valid Python
identifiers.

>>> # Allow users to use 'body' or 'text' to refer to the 'content' field
>>> parser.add_plugin(FieldAliasPlugin({"content": ["body", "text"]}))
>>> parser.parse("text:hello")
Term("content", "hello")

	
class whoosh.qparser.CopyFieldPlugin(map, group=<class 'whoosh.qparser.syntax.OrGroup'>, mirror=False)

	Looks for basic syntax nodes (terms, prefixes, wildcards, phrases, etc.)
occurring in a certain field and replaces it with a group (by default OR)
containing the original token and the token copied to a new field.

For example, the query:

hello name:matt

could be automatically converted by CopyFieldPlugin({"name", "author"})
to:

hello (name:matt OR author:matt)

This is useful where one field was indexed with a differently-analyzed copy
of another, and you want the query to search both fields.

You can specify a different group type with the group keyword. You can
also specify group=None, in which case the copied node is inserted
“inline” next to the original, instead of in a new group:

hello name:matt author:matt

	Parameters:	
	map – a dictionary mapping names of fields to copy to the
names of the destination fields.

	group – the type of group to create in place of the original
token. You can specify group=None to put the copied node
“inline” next to the original node instead of in a new group.

	two_way – if True, the plugin copies both ways, so if the user
specifies a query in the ‘toname’ field, it will be copied to
the ‘fromname’ field.

Syntax node objects

Base nodes

	
class whoosh.qparser.SyntaxNode

	Base class for nodes that make up the abstract syntax tree (AST) of a
parsed user query string. The AST is an intermediate step, generated
from the query string, then converted into a whoosh.query.Query
tree by calling the query() method on the nodes.

Instances have the following required attributes:

	has_fieldname

	True if this node has a fieldname attribute.

	has_text

	True if this node has a text attribute

	has_boost

	True if this node has a boost attribute.

	startchar

	The character position in the original text at which this node started.

	endchar

	The character position in the original text at which this node ended.

	
is_ws()

	Returns True if this node is ignorable whitespace.

	
query(parser)

	Returns a whoosh.query.Query instance corresponding to this
syntax tree node.

	
r()

	Returns a basic representation of this node. The base class’s
__repr__ method calls this, then does the extra busy work of adding
fieldname and boost where appropriate.

	
set_boost(boost)

	Sets the boost associated with this node.

For nodes that don’t have a boost, this is a no-op.

	
set_fieldname(name, override=False)

	Sets the fieldname associated with this node. If override is
False (the default), the fieldname will only be replaced if this node
does not already have a fieldname set.

For nodes that don’t have a fieldname, this is a no-op.

	
set_range(startchar, endchar)

	Sets the character range associated with this node.

Nodes

	
class whoosh.qparser.FieldnameNode(fieldname, original)

	Abstract syntax tree node for field name assignments.

	
class whoosh.qparser.TextNode(text)

	Intermediate base class for basic nodes that search for text, such as
term queries, wildcards, prefixes, etc.

Instances have the following attributes:

	qclass

	If a subclass does not override query(), the base class will use
this class to construct the query.

	tokenize

	If True and the subclass does not override query(), the node’s text
will be tokenized before constructing the query

	removestops

	If True and the subclass does not override query(), and the field’s
analyzer has a stop word filter, stop words will be removed from the
text before constructing the query.

	
class whoosh.qparser.WordNode(text)

	Syntax node for term queries.

	
class whoosh.qparser.RangeNode(start, end, startexcl, endexcl)

	Syntax node for range queries.

	
class whoosh.qparser.MarkerNode

	Base class for nodes that only exist to mark places in the tree.

Group nodes

	
class whoosh.qparser.GroupNode(nodes=None, boost=1.0, **kwargs)

	Base class for abstract syntax tree node types that group together
sub-nodes.

Instances have the following attributes:

	merging

	True if side-by-side instances of this group can be merged into a
single group.

	qclass

	If a subclass doesn’t override query(), the base class will simply
wrap this class around the queries returned by the subnodes.

This class implements a number of list methods for operating on the
subnodes.

	
class whoosh.qparser.BinaryGroup(nodes=None, boost=1.0, **kwargs)

	Intermediate base class for group nodes that have two subnodes and
whose qclass initializer takes two arguments instead of a list.

	
class whoosh.qparser.ErrorNode(message, node=None)

	

	
class whoosh.qparser.AndGroup(nodes=None, boost=1.0, **kwargs)

	

	
class whoosh.qparser.OrGroup(nodes=None, boost=1.0, **kwargs)

	

	
class whoosh.qparser.AndNotGroup(nodes=None, boost=1.0, **kwargs)

	

	
class whoosh.qparser.AndMaybeGroup(nodes=None, boost=1.0, **kwargs)

	

	
class whoosh.qparser.DisMaxGroup(nodes=None, boost=1.0, **kwargs)

	

	
class whoosh.qparser.RequireGroup(nodes=None, boost=1.0, **kwargs)

	

	
class whoosh.qparser.NotGroup(nodes=None, boost=1.0, **kwargs)

	

Operators

	
class whoosh.qparser.Operator(text, grouptype, leftassoc=True)

	Base class for PrefixOperator, PostfixOperator, and InfixOperator.

Operators work by moving the nodes they apply to (e.g. for prefix operator,
the previous node, for infix operator, the nodes on either side, etc.) into
a group node. The group provides the code for what to do with the nodes.

	Parameters:	
	text – the text of the operator in the query string.

	grouptype – the type of group to create in place of the operator
and the node(s) it operates on.

	leftassoc – for infix opeators, whether the operator is left
associative. use leftassoc=False for right-associative infix
operators.

	
class whoosh.qparser.PrefixOperator(text, grouptype, leftassoc=True)

	

	Parameters:	
	text – the text of the operator in the query string.

	grouptype – the type of group to create in place of the operator
and the node(s) it operates on.

	leftassoc – for infix opeators, whether the operator is left
associative. use leftassoc=False for right-associative infix
operators.

	
class whoosh.qparser.PostfixOperator(text, grouptype, leftassoc=True)

	

	Parameters:	
	text – the text of the operator in the query string.

	grouptype – the type of group to create in place of the operator
and the node(s) it operates on.

	leftassoc – for infix opeators, whether the operator is left
associative. use leftassoc=False for right-associative infix
operators.

	
class whoosh.qparser.InfixOperator(text, grouptype, leftassoc=True)

	

	Parameters:	
	text – the text of the operator in the query string.

	grouptype – the type of group to create in place of the operator
and the node(s) it operates on.

	leftassoc – for infix opeators, whether the operator is left
associative. use leftassoc=False for right-associative infix
operators.

query module

See also whoosh.qparser which contains code for parsing user queries
into query objects.

Base classes

The following abstract base classes are subclassed to create the “real”
query operations.

	
class whoosh.query.Query

	Abstract base class for all queries.

Note that this base class implements __or__, __and__, and __sub__ to allow
slightly more convenient composition of query objects:

>>> Term("content", u"a") | Term("content", u"b")
Or([Term("content", u"a"), Term("content", u"b")])

>>> Term("content", u"a") & Term("content", u"b")
And([Term("content", u"a"), Term("content", u"b")])

>>> Term("content", u"a") - Term("content", u"b")
And([Term("content", u"a"), Not(Term("content", u"b"))])

	
accept(fn)

	Applies the given function to this query’s subqueries (if any) and
then to this query itself:

def boost_phrases(q):
 if isintance(q, Phrase):
 q.boost *= 2.0
 return q

myquery = myquery.accept(boost_phrases)

This method automatically creates copies of the nodes in the original
tree before passing them to your function, so your function can change
attributes on nodes without altering the original tree.

This method is less flexible than using Query.apply() (in fact
it’s implemented using that method) but is often more straightforward.

	
all_terms(phrases=True)

	Returns a set of all terms in this query tree.

This method exists for backwards-compatibility. Use iter_all_terms()
instead.

	Parameters:	phrases – Whether to add words found in Phrase queries.

	Return type:	set [https://docs.python.org/2/library/stdtypes.html#set]

	
all_tokens(boost=1.0)

	Returns an iterator of analysis.Token objects corresponding
to all terms in this query tree. The Token objects will have the
fieldname, text, and boost attributes set. If the query
was built by the query parser, they Token objects will also have
startchar and endchar attributes indexing into the original
user query.

	
apply(fn)

	If this query has children, calls the given function on each child
and returns a new copy of this node with the new children returned by
the function. If this is a leaf node, simply returns this object.

This is useful for writing functions that transform a query tree. For
example, this function changes all Term objects in a query tree into
Variations objects:

def term2var(q):
 if isinstance(q, Term):
 return Variations(q.fieldname, q.text)
 else:
 return q.apply(term2var)

q = And([Term("f", "alfa"),
 Or([Term("f", "bravo"),
 Not(Term("f", "charlie"))])])
q = term2var(q)

Note that this method does not automatically create copies of nodes.
To avoid modifying the original tree, your function should call the
Query.copy() method on nodes before changing their attributes.

	
children()

	Returns an iterator of the subqueries of this object.

	
copy()

	Deprecated, just use copy.deepcopy.

	
deletion_docs(searcher)

	Returns an iterator of docnums matching this query for the purpose
of deletion. The delete_by_query()
method will use this method when deciding what documents to delete,
allowing special queries (e.g. nested queries) to override what
documents are deleted. The default implementation just forwards to
Query.docs().

	
docs(searcher)

	Returns an iterator of docnums matching this query.

>>> with my_index.searcher() as searcher:
... list(my_query.docs(searcher))
[10, 34, 78, 103]

	Parameters:	searcher – A whoosh.searching.Searcher object.

	
estimate_min_size(ixreader)

	Returns an estimate of the minimum number of documents this query
could potentially match.

	
estimate_size(ixreader)

	Returns an estimate of how many documents this query could
potentially match (for example, the estimated size of a simple term
query is the document frequency of the term). It is permissible to
overestimate, but not to underestimate.

	
existing_terms(ixreader, phrases=True, expand=False, fieldname=None)

	Returns a set of all byteterms in this query tree that exist in
the given ixreader.

	Parameters:	
	ixreader – A whoosh.reading.IndexReader object.

	phrases – Whether to add words found in Phrase queries.

	expand – If True, queries that match multiple terms
will return all matching expansions.

	Return type:	set [https://docs.python.org/2/library/stdtypes.html#set]

	
field()

	Returns the field this query matches in, or None if this query does
not match in a single field.

	
has_terms()

	Returns True if this specific object represents a search for a
specific term (as opposed to a pattern, as in Wildcard and Prefix) or
terms (i.e., whether the replace() method does something
meaningful on this instance).

	
is_leaf()

	Returns True if this is a leaf node in the query tree, or False if
this query has sub-queries.

	
is_range()

	Returns True if this object searches for values within a range.

	
iter_all_terms(phrases=True)

	Returns an iterator of (fieldname, text) pairs for all terms in
this query tree.

>>> qp = qparser.QueryParser("text", myindex.schema)
>>> q = myparser.parse("alfa bravo title:charlie")
>>> # List the terms in a query
>>> list(q.iter_all_terms())
[("text", "alfa"), ("text", "bravo"), ("title", "charlie")]
>>> # Get a set of all terms in the query that don't exist in the index
>>> r = myindex.reader()
>>> missing = set(t for t in q.iter_all_terms() if t not in r)
set([("text", "alfa"), ("title", "charlie")])
>>> # All terms in the query that occur in fewer than 5 documents in
>>> # the index
>>> [t for t in q.iter_all_terms() if r.doc_frequency(t[0], t[1]) < 5]
[("title", "charlie")]

	Parameters:	phrases – Whether to add words found in Phrase queries.

	
leaves()

	Returns an iterator of all the leaf queries in this query tree as a
flat series.

	
matcher(searcher, context=None)

	Returns a Matcher object you can use to
retrieve documents and scores matching this query.

	Return type:	whoosh.matching.Matcher

	
normalize()

	Returns a recursively “normalized” form of this query. The
normalized form removes redundancy and empty queries. This is called
automatically on query trees created by the query parser, but you may
want to call it yourself if you’re writing your own parser or building
your own queries.

>>> q = And([And([Term("f", u"a"),
... Term("f", u"b")]),
... Term("f", u"c"), Or([])])
>>> q.normalize()
And([Term("f", u"a"), Term("f", u"b"), Term("f", u"c")])

Note that this returns a new, normalized query. It does not modify
the original query “in place”.

	
replace(fieldname, oldtext, newtext)

	Returns a copy of this query with oldtext replaced by newtext (if
oldtext was anywhere in this query).

Note that this returns a new query with the given text replaced. It
does not modify the original query “in place”.

	
requires()

	Returns a set of queries that are known to be required to match
for the entire query to match. Note that other queries might also turn
out to be required but not be determinable by examining the static
query.

>>> a = Term("f", u"a")
>>> b = Term("f", u"b")
>>> And([a, b]).requires()
set([Term("f", u"a"), Term("f", u"b")])
>>> Or([a, b]).requires()
set([])
>>> AndMaybe(a, b).requires()
set([Term("f", u"a")])
>>> a.requires()
set([Term("f", u"a")])

	
simplify(ixreader)

	Returns a recursively simplified form of this query, where
“second-order” queries (such as Prefix and Variations) are re-written
into lower-level queries (such as Term and Or).

	
terms(phrases=False)

	Yields zero or more (fieldname, text) pairs queried by this object.
You can check whether a query object targets specific terms before you
call this method using Query.has_terms().

To get all terms in a query tree, use Query.iter_all_terms().

	
tokens(boost=1.0, exreader=None)

	Yields zero or more analysis.Token objects corresponding to
the terms searched for by this query object. You can check whether a
query object targets specific terms before you call this method using
Query.has_terms().

The Token objects will have the fieldname, text, and boost
attributes set. If the query was built by the query parser, they Token
objects will also have startchar and endchar attributes
indexing into the original user query.

To get all tokens for a query tree, use Query.all_tokens().

	Parameters:	exreader – a reader to use to expand multiterm queries such as
prefixes and wildcards. The default is None meaning do not expand.

	
with_boost(boost)

	Returns a COPY of this query with the boost set to the given value.

If a query type does not accept a boost itself, it will try to pass the
boost on to its children, if any.

	
class whoosh.query.CompoundQuery(subqueries, boost=1.0)

	Abstract base class for queries that combine or manipulate the results
of multiple sub-queries .

	
class whoosh.query.MultiTerm

	Abstract base class for queries that operate on multiple terms in the
same field.

	
class whoosh.query.ExpandingTerm

	Intermediate base class for queries such as FuzzyTerm and Variations
that expand into multiple queries, but come from a single term.

	
class whoosh.query.WrappingQuery(child)

	

Query classes

	
class whoosh.query.Term(fieldname, text, boost=1.0, minquality=None)

	Matches documents containing the given term (fieldname+text pair).

>>> Term("content", u"render")

	
class whoosh.query.Variations(fieldname, text, boost=1.0)

	Query that automatically searches for morphological variations of the
given word in the same field.

	
class whoosh.query.FuzzyTerm(fieldname, text, boost=1.0, maxdist=1, prefixlength=1, constantscore=True)

	Matches documents containing words similar to the given term.

	Parameters:	
	fieldname – The name of the field to search.

	text – The text to search for.

	boost – A boost factor to apply to scores of documents matching
this query.

	maxdist – The maximum edit distance from the given text.

	prefixlength – The matched terms must share this many initial
characters with ‘text’. For example, if text is “light” and
prefixlength is 2, then only terms starting with “li” are checked
for similarity.

	
class whoosh.query.Phrase(fieldname, words, slop=1, boost=1.0, char_ranges=None)

	Matches documents containing a given phrase.

	Parameters:	
	fieldname – the field to search.

	words – a list of words (unicode strings) in the phrase.

	slop – the number of words allowed between each “word” in the
phrase; the default of 1 means the phrase must match exactly.

	boost – a boost factor that to apply to the raw score of
documents matched by this query.

	char_ranges – if a Phrase object is created by the query parser,
it will set this attribute to a list of (startchar, endchar) pairs
corresponding to the words in the phrase

	
class whoosh.query.And(subqueries, boost=1.0)

	Matches documents that match ALL of the subqueries.

>>> And([Term("content", u"render"),
... Term("content", u"shade"),
... Not(Term("content", u"texture"))])
>>> # You can also do this
>>> Term("content", u"render") & Term("content", u"shade")

	
class whoosh.query.Or(subqueries, boost=1.0, minmatch=0, scale=None)

	Matches documents that match ANY of the subqueries.

>>> Or([Term("content", u"render"),
... And([Term("content", u"shade"), Term("content", u"texture")]),
... Not(Term("content", u"network"))])
>>> # You can also do this
>>> Term("content", u"render") | Term("content", u"shade")

	Parameters:	
	subqueries – a list of Query objects to search for.

	boost – a boost factor to apply to the scores of all matching
documents.

	minmatch – not yet implemented.

	scale – a scaling factor for a “coordination bonus”. If this
value is not None, it should be a floating point number greater
than 0 and less than 1. The scores of the matching documents are
boosted/penalized based on the number of query terms that matched
in the document. This number scales the effect of the bonuses.

	
class whoosh.query.DisjunctionMax(subqueries, boost=1.0, tiebreak=0.0)

	Matches all documents that match any of the subqueries, but scores each
document using the maximum score from the subqueries.

	
class whoosh.query.Not(query, boost=1.0)

	Excludes any documents that match the subquery.

>>> # Match documents that contain 'render' but not 'texture'
>>> And([Term("content", u"render"),
... Not(Term("content", u"texture"))])
>>> # You can also do this
>>> Term("content", u"render") - Term("content", u"texture")

	Parameters:	
	query – A Query object. The results of this query
are excluded from the parent query.

	boost – Boost is meaningless for excluded documents but this
keyword argument is accepted for the sake of a consistent
interface.

	
class whoosh.query.Prefix(fieldname, text, boost=1.0, constantscore=True)

	Matches documents that contain any terms that start with the given text.

>>> # Match documents containing words starting with 'comp'
>>> Prefix("content", u"comp")

	
class whoosh.query.Wildcard(fieldname, text, boost=1.0, constantscore=True)

	Matches documents that contain any terms that match a “glob” pattern.
See the Python fnmatch module for information about globs.

>>> Wildcard("content", u"in*f?x")

	
class whoosh.query.Regex(fieldname, text, boost=1.0, constantscore=True)

	Matches documents that contain any terms that match a regular
expression. See the Python re module for information about regular
expressions.

	
class whoosh.query.TermRange(fieldname, start, end, startexcl=False, endexcl=False, boost=1.0, constantscore=True)

	Matches documents containing any terms in a given range.

>>> # Match documents where the indexed "id" field is greater than or equal
>>> # to 'apple' and less than or equal to 'pear'.
>>> TermRange("id", u"apple", u"pear")

	Parameters:	
	fieldname – The name of the field to search.

	start – Match terms equal to or greater than this.

	end – Match terms equal to or less than this.

	startexcl – If True, the range start is exclusive. If False, the
range start is inclusive.

	endexcl – If True, the range end is exclusive. If False, the
range end is inclusive.

	boost – Boost factor that should be applied to the raw score of
results matched by this query.

	
class whoosh.query.NumericRange(fieldname, start, end, startexcl=False, endexcl=False, boost=1.0, constantscore=True)

	A range query for NUMERIC fields. Takes advantage of tiered indexing
to speed up large ranges by matching at a high resolution at the edges of
the range and a low resolution in the middle.

>>> # Match numbers from 10 to 5925 in the "number" field.
>>> nr = NumericRange("number", 10, 5925)

	Parameters:	
	fieldname – The name of the field to search.

	start – Match terms equal to or greater than this number. This
should be a number type, not a string.

	end – Match terms equal to or less than this number. This should
be a number type, not a string.

	startexcl – If True, the range start is exclusive. If False, the
range start is inclusive.

	endexcl – If True, the range end is exclusive. If False, the
range end is inclusive.

	boost – Boost factor that should be applied to the raw score of
results matched by this query.

	constantscore – If True, the compiled query returns a constant
score (the value of the boost keyword argument) instead of
actually scoring the matched terms. This gives a nice speed boost
and won’t affect the results in most cases since numeric ranges
will almost always be used as a filter.

	
class whoosh.query.DateRange(fieldname, start, end, startexcl=False, endexcl=False, boost=1.0, constantscore=True)

	This is a very thin subclass of NumericRange that only
overrides the initializer and __repr__() methods to work with datetime
objects instead of numbers. Internally this object converts the datetime
objects it’s created with to numbers and otherwise acts like a
NumericRange query.

>>> DateRange("date", datetime(2010, 11, 3, 3, 0),
... datetime(2010, 11, 3, 17, 59))

	
class whoosh.query.Every(fieldname=None, boost=1.0)

	A query that matches every document containing any term in a given
field. If you don’t specify a field, the query matches every document.

>>> # Match any documents with something in the "path" field
>>> q = Every("path")
>>> # Matcher every document
>>> q = Every()

The unfielded form (matching every document) is efficient.

The fielded is more efficient than a prefix query with an empty prefix or a
‘*’ wildcard, but it can still be very slow on large indexes. It requires
the searcher to read the full posting list of every term in the given
field.

Instead of using this query it is much more efficient when you create the
index to include a single term that appears in all documents that have the
field you want to match.

For example, instead of this:

Match all documents that have something in the "path" field
q = Every("path")

Do this when indexing:

Add an extra field that indicates whether a document has a path
schema = fields.Schema(path=fields.ID, has_path=fields.ID)

When indexing, set the "has_path" field based on whether the document
has anything in the "path" field
writer.add_document(text=text_value1)
writer.add_document(text=text_value2, path=path_value2, has_path="t")

Then to find all documents with a path:

q = Term("has_path", "t")

	Parameters:	fieldname – the name of the field to match, or None or *
to match all documents.

	
whoosh.query.NullQuery

	

Binary queries

	
class whoosh.query.Require(a, b)

	Binary query returns results from the first query that also appear in
the second query, but only uses the scores from the first query. This lets
you filter results without affecting scores.

	
class whoosh.query.AndMaybe(a, b)

	Binary query takes results from the first query. If and only if the
same document also appears in the results from the second query, the score
from the second query will be added to the score from the first query.

	
class whoosh.query.AndNot(a, b)

	Binary boolean query of the form ‘a ANDNOT b’, where documents that
match b are removed from the matches for a.

	
class whoosh.query.Otherwise(a, b)

	A binary query that only matches the second clause if the first clause
doesn’t match any documents.

Span queries

	
class whoosh.query.Span(start, end=None, startchar=None, endchar=None, boost=1.0)

	
	
classmethod merge(spans)

	Merges overlapping and touches spans in the given list of spans.

Note that this modifies the original list.

>>> spans = [Span(1,2), Span(3)]
>>> Span.merge(spans)
>>> spans
[<1-3>]

	
class whoosh.query.SpanQuery

	Abstract base class for span-based queries. Each span query type wraps
a “regular” query that implements the basic document-matching functionality
(for example, SpanNear wraps an And query, because SpanNear requires that
the two sub-queries occur in the same documents. The wrapped query is
stored in the q attribute.

Subclasses usually only need to implement the initializer to set the
wrapped query, and matcher() to return a span-aware matcher object.

	
class whoosh.query.SpanFirst(q, limit=0)

	Matches spans that end within the first N positions. This lets you
for example only match terms near the beginning of the document.

	Parameters:	
	q – the query to match.

	limit – the query must match within this position at the start
of a document. The default is 0, which means the query must
match at the first position.

	
class whoosh.query.SpanNear(a, b, slop=1, ordered=True, mindist=1)

	Note: for new code, use SpanNear2 instead of this class. SpanNear2
takes a list of sub-queries instead of requiring you to create a binary
tree of query objects.

Matches queries that occur near each other. By default, only matches
queries that occur right next to each other (slop=1) and in order
(ordered=True).

For example, to find documents where “whoosh” occurs next to “library”
in the “text” field:

from whoosh import query, spans
t1 = query.Term("text", "whoosh")
t2 = query.Term("text", "library")
q = spans.SpanNear(t1, t2)

To find documents where “whoosh” occurs at most 5 positions before
“library”:

q = spans.SpanNear(t1, t2, slop=5)

To find documents where “whoosh” occurs at most 5 positions before or after
“library”:

q = spans.SpanNear(t1, t2, slop=5, ordered=False)

You can use the phrase() class method to create a tree of SpanNear
queries to match a list of terms:

q = spans.SpanNear.phrase("text", ["whoosh", "search", "library"],
 slop=2)

	Parameters:	
	a – the first query to match.

	b – the second query that must occur within “slop” positions of
the first query.

	slop – the number of positions within which the queries must
occur. Default is 1, meaning the queries must occur right next
to each other.

	ordered – whether a must occur before b. Default is True.

	Pram mindist:	the minimum distance allowed between the queries.

	
class whoosh.query.SpanNear2(qs, slop=1, ordered=True, mindist=1)

	Matches queries that occur near each other. By default, only matches
queries that occur right next to each other (slop=1) and in order
(ordered=True).

New code should use this query type instead of SpanNear.

(Unlike SpanNear, this query takes a list of subqueries instead of
requiring you to build a binary tree of query objects. This query should
also be slightly faster due to less overhead.)

For example, to find documents where “whoosh” occurs next to “library”
in the “text” field:

from whoosh import query, spans
t1 = query.Term("text", "whoosh")
t2 = query.Term("text", "library")
q = spans.SpanNear2([t1, t2])

To find documents where “whoosh” occurs at most 5 positions before
“library”:

q = spans.SpanNear2([t1, t2], slop=5)

To find documents where “whoosh” occurs at most 5 positions before or after
“library”:

q = spans.SpanNear2(t1, t2, slop=5, ordered=False)

	Parameters:	
	qs – a sequence of sub-queries to match.

	slop – the number of positions within which the queries must
occur. Default is 1, meaning the queries must occur right next
to each other.

	ordered – whether a must occur before b. Default is True.

	Pram mindist:	the minimum distance allowed between the queries.

	
class whoosh.query.SpanNot(a, b)

	Matches spans from the first query only if they don’t overlap with
spans from the second query. If there are no non-overlapping spans, the
document does not match.

For example, to match documents that contain “bear” at most 2 places after
“apple” in the “text” field but don’t have “cute” between them:

from whoosh import query, spans
t1 = query.Term("text", "apple")
t2 = query.Term("text", "bear")
near = spans.SpanNear(t1, t2, slop=2)
q = spans.SpanNot(near, query.Term("text", "cute"))

	Parameters:	
	a – the query to match.

	b – do not match any spans that overlap with spans from this
query.

	
class whoosh.query.SpanOr(subqs)

	Matches documents that match any of a list of sub-queries. Unlike
query.Or, this class merges together matching spans from the different
sub-queries when they overlap.

	Parameters:	subqs – a list of queries to match.

	
class whoosh.query.SpanContains(a, b)

	Matches documents where the spans of the first query contain any spans
of the second query.

For example, to match documents where “apple” occurs at most 10 places
before “bear” in the “text” field and “cute” is between them:

from whoosh import query, spans
t1 = query.Term("text", "apple")
t2 = query.Term("text", "bear")
near = spans.SpanNear(t1, t2, slop=10)
q = spans.SpanContains(near, query.Term("text", "cute"))

	Parameters:	
	a – the query to match.

	b – the query whose spans must occur within the matching spans
of the first query.

	
class whoosh.query.SpanBefore(a, b)

	Matches documents where the spans of the first query occur before any
spans of the second query.

For example, to match documents where “apple” occurs anywhere before
“bear”:

from whoosh import query, spans
t1 = query.Term("text", "apple")
t2 = query.Term("text", "bear")
q = spans.SpanBefore(t1, t2)

	Parameters:	
	a – the query that must occur before the second.

	b – the query that must occur after the first.

	
class whoosh.query.SpanCondition(a, b)

	Matches documents that satisfy both subqueries, but only uses the spans
from the first subquery.

This is useful when you want to place conditions on matches but not have
those conditions affect the spans returned.

For example, to get spans for the term alfa in documents that also
must contain the term bravo:

SpanCondition(Term("text", u"alfa"), Term("text", u"bravo"))

Special queries

	
class whoosh.query.NestedParent(parents, subq, per_parent_limit=None, score_fn=<built-in function sum>)

	A query that allows you to search for “nested” documents, where you can
index (possibly multiple levels of) “parent” and “child” documents using
the group() and/or
start_group() methods of a
whoosh.writing.IndexWriter to indicate that hierarchically related
documents should be kept together:

schema = fields.Schema(type=fields.ID, text=fields.TEXT(stored=True))

with ix.writer() as w:
 # Say we're indexing chapters (type=chap) and each chapter has a
 # number of paragraphs (type=p)
 with w.group():
 w.add_document(type="chap", text="Chapter 1")
 w.add_document(type="p", text="Able baker")
 w.add_document(type="p", text="Bright morning")
 with w.group():
 w.add_document(type="chap", text="Chapter 2")
 w.add_document(type="p", text="Car trip")
 w.add_document(type="p", text="Dog eared")
 w.add_document(type="p", text="Every day")
 with w.group():
 w.add_document(type="chap", text="Chapter 3")
 w.add_document(type="p", text="Fine day")

The NestedParent query wraps two sub-queries: the “parent query”
matches a class of “parent documents”. The “sub query” matches nested
documents you want to find. For each “sub document” the “sub query” finds,
this query acts as if it found the corresponding “parent document”.

>>> with ix.searcher() as s:
... r = s.search(query.Term("text", "day"))
... for hit in r:
... print(hit["text"])
...
Chapter 2
Chapter 3

	Parameters:	
	parents – a query, DocIdSet object, or Results object
representing the documents you want to use as the “parent”
documents. Where the sub-query matches, the corresponding document
in these results will be returned as the match.

	subq – a query matching the information you want to find.

	per_parent_limit – a maximum number of “sub documents” to search
per parent. The default is None, meaning no limit.

	score_fn – a function to use to combine the scores of matching
sub-documents to calculate the score returned for the parent
document. The default is sum, that is, add up the scores of the
sub-documents.

	
class whoosh.query.NestedChildren(parents, subq, boost=1.0)

	This is the reverse of a NestedParent query: instead of taking
a query that matches children but returns the parent, this query matches
parents but returns the children.

This is useful, for example, to search for an album title and return the
songs in the album:

schema = fields.Schema(type=fields.ID(stored=True),
 album_name=fields.TEXT(stored=True),
 track_num=fields.NUMERIC(stored=True),
 track_name=fields.TEXT(stored=True),
 lyrics=fields.TEXT)
ix = RamStorage().create_index(schema)

Indexing
with ix.writer() as w:
 # For each album, index a "group" of a parent "album" document and
 # multiple child "track" documents.
 with w.group():
 w.add_document(type="album",
 artist="The Cure", album_name="Disintegration")
 w.add_document(type="track", track_num=1,
 track_name="Plainsong")
 w.add_document(type="track", track_num=2,
 track_name="Pictures of You")
 # ...
 # ...

Find songs where the song name has "heaven" in the title and the
album the song is on has "hell" in the title
qp = QueryParser("lyrics", ix.schema)
with ix.searcher() as s:
 # A query that matches all parents
 all_albums = qp.parse("type:album")

 # A query that matches the parents we want
 albums_with_hell = qp.parse("album_name:hell")

 # A query that matches the desired albums but returns the tracks
 songs_on_hell_albums = NestedChildren(all_albums, albums_with_hell)

 # A query that matches tracks with heaven in the title
 songs_with_heaven = qp.parse("track_name:heaven")

 # A query that finds tracks with heaven in the title on albums
 # with hell in the title
 q = query.And([songs_on_hell_albums, songs_with_heaven])

	
class whoosh.query.ConstantScoreQuery(child, score=1.0)

	Wraps a query and uses a matcher that always gives a constant score
to all matching documents. This is a useful optimization when you don’t
care about scores from a certain branch of the query tree because it is
simply acting as a filter. See also the AndMaybe query.

Exceptions

	
exception whoosh.query.QueryError

	Error encountered while running a query.

reading module

This module contains classes that allow reading from an index.

Classes

	
class whoosh.reading.IndexReader

	Do not instantiate this object directly. Instead use Index.reader().

	
all_doc_ids()

	Returns an iterator of all (undeleted) document IDs in the reader.

	
all_stored_fields()

	Yields the stored fields for all non-deleted documents.

	
all_terms()

	Yields (fieldname, text) tuples for every term in the index.

	
close()

	Closes the open files associated with this reader.

	
codec()

	Returns the whoosh.codec.base.Codec object used to read
this reader’s segment. If this reader is not atomic
(reader.is_atomic() == True), returns None.

	
column_reader(fieldname, column=None, reverse=False, translate=False)

	

	Parameters:	
	fieldname – the name of the field for which to get a reader.

	column – if passed, use this Column object instead of the one
associated with the field in the Schema.

	reverse – if passed, reverses the order of keys returned by the
reader’s sort_key() method. If the column type is not
reversible, this will raise a NotImplementedError.

	translate – if True, wrap the reader to call the field’s
from_bytes() method on the returned values.

	Returns:	a whoosh.columns.ColumnReader object.

	
corrector(fieldname)

	Returns a whoosh.spelling.Corrector object that suggests
corrections based on the terms in the given field.

	
doc_count()

	Returns the total number of UNDELETED documents in this reader.

	
doc_count_all()

	Returns the total number of documents, DELETED OR UNDELETED,
in this reader.

	
doc_field_length(docnum, fieldname, default=0)

	Returns the number of terms in the given field in the given
document. This is used by some scoring algorithms.

	
doc_frequency(fieldname, text)

	Returns how many documents the given term appears in.

	
expand_prefix(fieldname, prefix)

	Yields terms in the given field that start with the given prefix.

	
field_length(fieldname)

	Returns the total number of terms in the given field. This is used
by some scoring algorithms.

	
field_terms(fieldname)

	Yields all term values (converted from on-disk bytes) in the given
field.

	
first_id(fieldname, text)

	Returns the first ID in the posting list for the given term. This
may be optimized in certain backends.

	
frequency(fieldname, text)

	Returns the total number of instances of the given term in the
collection.

	
generation()

	Returns the generation of the index being read, or -1 if the backend
is not versioned.

	
has_deletions()

	Returns True if the underlying index/segment has deleted
documents.

	
has_vector(docnum, fieldname)

	Returns True if the given document has a term vector for the given
field.

	
indexed_field_names()

	Returns an iterable of strings representing the names of the indexed
fields. This may include additional names not explicitly listed in the
Schema if you use “glob” fields.

	
is_deleted(docnum)

	Returns True if the given document number is marked deleted.

	
iter_docs()

	Yields a series of (docnum, stored_fields_dict)
tuples for the undeleted documents in the reader.

	
iter_field(fieldname, prefix='')

	Yields (text, terminfo) tuples for all terms in the given field.

	
iter_from(fieldname, text)

	Yields ((fieldname, text), terminfo) tuples for all terms in the
reader, starting at the given term.

	
iter_postings()

	Low-level method, yields all postings in the reader as
(fieldname, text, docnum, weight, valuestring) tuples.

	
iter_prefix(fieldname, prefix)

	Yields (text, terminfo) tuples for all terms in the given field with
a certain prefix.

	
leaf_readers()

	Returns a list of (IndexReader, docbase) pairs for the child readers
of this reader if it is a composite reader. If this is not a composite
reader, it returns [(self, 0)].

	
lexicon(fieldname)

	Yields all bytestrings in the given field.

	
max_field_length(fieldname)

	Returns the minimum length of the field across all documents. This
is used by some scoring algorithms.

	
min_field_length(fieldname)

	Returns the minimum length of the field across all documents. This
is used by some scoring algorithms.

	
most_distinctive_terms(fieldname, number=5, prefix='')

	Returns the top ‘number’ terms with the highest tf*idf scores as
a list of (score, text) tuples.

	
most_frequent_terms(fieldname, number=5, prefix='')

	Returns the top ‘number’ most frequent terms in the given field as a
list of (frequency, text) tuples.

	
postings(fieldname, text)

	Returns a Matcher for the postings of the
given term.

>>> pr = reader.postings("content", "render")
>>> pr.skip_to(10)
>>> pr.id
12

	Parameters:	
	fieldname – the field name or field number of the term.

	text – the text of the term.

	Return type:	whoosh.matching.Matcher

	
segment()

	Returns the whoosh.index.Segment object used by this reader.
If this reader is not atomic (reader.is_atomic() == True), returns
None.

	
storage()

	Returns the whoosh.filedb.filestore.Storage object used by
this reader to read its files. If the reader is not atomic,
(reader.is_atomic() == True), returns None.

	
stored_fields(docnum)

	Returns the stored fields for the given document number.

	Parameters:	numerickeys – use field numbers as the dictionary keys instead of
field names.

	
term_info(fieldname, text)

	Returns a TermInfo object allowing access to various
statistics about the given term.

	
terms_from(fieldname, prefix)

	Yields (fieldname, text) tuples for every term in the index starting
at the given prefix.

	
terms_within(fieldname, text, maxdist, prefix=0)

	Returns a generator of words in the given field within maxdist
Damerau-Levenshtein edit distance of the given text.

Important: the terms are returned in no particular order. The only
criterion is that they are within maxdist edits of text. You
may want to run this method multiple times with increasing maxdist
values to ensure you get the closest matches first. You may also have
additional information (such as term frequency or an acoustic matching
algorithm) you can use to rank terms with the same edit distance.

	Parameters:	
	maxdist – the maximum edit distance.

	prefix – require suggestions to share a prefix of this length
with the given word. This is often justifiable since most
misspellings do not involve the first letter of the word.
Using a prefix dramatically decreases the time it takes to generate
the list of words.

	seen – an optional set object. Words that appear in the set will
not be yielded.

	
vector(docnum, fieldname, format_=None)

	Returns a Matcher object for the
given term vector.

>>> docnum = searcher.document_number(path=u'/a/b/c')
>>> v = searcher.vector(docnum, "content")
>>> v.all_as("frequency")
[(u"apple", 3), (u"bear", 2), (u"cab", 2)]

	Parameters:	
	docnum – the document number of the document for which you want
the term vector.

	fieldname – the field name or field number of the field for which
you want the term vector.

	Return type:	whoosh.matching.Matcher

	
vector_as(astype, docnum, fieldname)

	Returns an iterator of (termtext, value) pairs for the terms in the
given term vector. This is a convenient shortcut to calling vector()
and using the Matcher object when all you want are the terms and/or
values.

>>> docnum = searcher.document_number(path=u'/a/b/c')
>>> searcher.vector_as("frequency", docnum, "content")
[(u"apple", 3), (u"bear", 2), (u"cab", 2)]

	Parameters:	
	docnum – the document number of the document for which you want
the term vector.

	fieldname – the field name or field number of the field for which
you want the term vector.

	astype – a string containing the name of the format you want the
term vector’s data in, for example “weights”.

	
class whoosh.reading.MultiReader(readers, generation=None)

	Do not instantiate this object directly. Instead use Index.reader().

	
class whoosh.reading.TermInfo(weight=0, df=0, minlength=None, maxlength=0, maxweight=0, minid=None, maxid=0)

	Represents a set of statistics about a term. This object is returned by
IndexReader.term_info(). These statistics may be useful for
optimizations and scoring algorithms.

	
doc_frequency()

	Returns the number of documents the term appears in.

	
max_id()

	Returns the highest document ID this term appears in.

	
max_length()

	Returns the length of the longest field value the term appears
in.

	
max_weight()

	Returns the number of times the term appears in the document in
which it appears the most.

	
min_id()

	Returns the lowest document ID this term appears in.

	
min_length()

	Returns the length of the shortest field value the term appears
in.

	
weight()

	Returns the total frequency of the term across all documents.

Exceptions

	
exception whoosh.reading.TermNotFound

	

scoring module

This module contains classes for scoring (and sorting) search results.

Base classes

	
class whoosh.scoring.WeightingModel

	Abstract base class for scoring models. A WeightingModel object provides
a method, scorer, which returns an instance of
whoosh.scoring.Scorer.

Basically, WeightingModel objects store the configuration information for
the model (for example, the values of B and K1 in the BM25F model), and
then creates a scorer instance based on additional run-time information
(the searcher, the fieldname, and term text) to do the actual scoring.

	
final(searcher, docnum, score)

	Returns a final score for each document. You can use this method
in subclasses to apply document-level adjustments to the score, for
example using the value of stored field to influence the score
(although that would be slow).

WeightingModel sub-classes that use final() should have the
attribute use_final set to True.

	Parameters:	
	searcher – whoosh.searching.Searcher for the index.

	docnum – the doc number of the document being scored.

	score – the document’s accumulated term score.

	Return type:	float [https://docs.python.org/2/library/functions.html#float]

	
idf(searcher, fieldname, text)

	Returns the inverse document frequency of the given term.

	
scorer(searcher, fieldname, text, qf=1)

	Returns an instance of whoosh.scoring.Scorer configured
for the given searcher, fieldname, and term text.

	
class whoosh.scoring.BaseScorer

	Base class for “scorer” implementations. A scorer provides a method for
scoring a document, and sometimes methods for rating the “quality” of a
document and a matcher’s current “block”, to implement quality-based
optimizations.

Scorer objects are created by WeightingModel objects. Basically,
WeightingModel objects store the configuration information for the model
(for example, the values of B and K1 in the BM25F model), and then creates
a scorer instance.

	
block_quality(matcher)

	Returns the maximum limit on the possible score the matcher can
give in its current “block” (whatever concept of “block” the
backend might use). This can be an estimate and not necessarily the
actual maximum score possible, but it must never be less than the
actual maximum score.

If this score is less than the minimum score
required to make the “top N” results, then we can tell the matcher to
skip ahead to another block with better “quality”.

	
max_quality()

	Returns the maximum limit on the possible score the matcher can
give. This can be an estimate and not necessarily the actual maximum
score possible, but it must never be less than the actual maximum
score.

	
score(matcher)

	Returns a score for the current document of the matcher.

	
supports_block_quality()

	Returns True if this class supports quality optimizations.

	
class whoosh.scoring.WeightScorer(maxweight)

	A scorer that simply returns the weight as the score. This is useful
for more complex weighting models to return when they are asked for a
scorer for fields that aren’t scorable (don’t store field lengths).

	
class whoosh.scoring.WeightLengthScorer

	Base class for scorers where the only per-document variables are term
weight and field length.

Subclasses should override the _score(weight, length) method to return
the score for a document with the given weight and length, and call the
setup() method at the end of the initializer to set up common
attributes.

Scoring algorithm classes

	
class whoosh.scoring.BM25F(B=0.75, K1=1.2, **kwargs)

	Implements the BM25F scoring algorithm.

>>> from whoosh import scoring
>>> # Set a custom B value for the "content" field
>>> w = scoring.BM25F(B=0.75, content_B=1.0, K1=1.5)

	Parameters:	
	B – free parameter, see the BM25 literature. Keyword arguments of
the form fieldname_B (for example, body_B) set field-
specific values for B.

	K1 – free parameter, see the BM25 literature.

	
class whoosh.scoring.TF_IDF

	

	
class whoosh.scoring.Frequency

	

Scoring utility classes

	
class whoosh.scoring.FunctionWeighting(fn)

	Uses a supplied function to do the scoring. For simple scoring functions
and experiments this may be simpler to use than writing a full weighting
model class and scorer class.

The function should accept the arguments
searcher, fieldname, text, matcher.

For example, the following function will score documents based on the
earliest position of the query term in the document:

def pos_score_fn(searcher, fieldname, text, matcher):
 poses = matcher.value_as("positions")
 return 1.0 / (poses[0] + 1)

pos_weighting = scoring.FunctionWeighting(pos_score_fn)
with myindex.searcher(weighting=pos_weighting) as s:
 results = s.search(q)

Note that the searcher passed to the function may be a per-segment searcher
for performance reasons. If you want to get global statistics inside the
function, you should use searcher.get_parent() to get the top-level
searcher. (However, if you are using global statistics, you should probably
write a real model/scorer combo so you can cache them on the object.)

	
class whoosh.scoring.MultiWeighting(default, **weightings)

	Chooses from multiple scoring algorithms based on the field.

The only non-keyword argument specifies the default
Weighting instance to use. Keyword arguments specify
Weighting instances for specific fields.

For example, to use BM25 for most fields, but Frequency for
the id field and TF_IDF for the keys field:

mw = MultiWeighting(BM25(), id=Frequency(), keys=TF_IDF())

	Parameters:	default – the Weighting instance to use for fields not
specified in the keyword arguments.

	
class whoosh.scoring.ReverseWeighting(weighting)

	Wraps a weighting object and subtracts the wrapped model’s scores from
0, essentially reversing the weighting model.

searching module

This module contains classes and functions related to searching the index.

Searching classes

	
class whoosh.searching.Searcher(reader, weighting=<class 'whoosh.scoring.BM25F'>, closereader=True, fromindex=None, parent=None)

	Wraps an IndexReader object and provides
methods for searching the index.

	Parameters:	
	reader – An IndexReader object for
the index to search.

	weighting – A whoosh.scoring.Weighting object to use to
score found documents.

	closereader – Whether the underlying reader will be closed when
the searcher is closed.

	fromindex – An optional reference to the index of the underlying
reader. This is required for Searcher.up_to_date() and
Searcher.refresh() to work.

	
boolean_context()

	Shortcut returns a SearchContext set for unscored (boolean)
searching.

	
collector(limit=10, sortedby=None, reverse=False, groupedby=None, collapse=None, collapse_limit=1, collapse_order=None, optimize=True, filter=None, mask=None, terms=False, maptype=None, scored=True)

	Low-level method: returns a configured
whoosh.collectors.Collector object based on the given
arguments. You can use this object with
Searcher.search_with_collector() to search.

See the documentation for the Searcher.search() method for a
description of the parameters.

This method may be useful to get a basic collector object and then wrap
it with another collector from whoosh.collectors or with a custom
collector of your own:

Equivalent of
results = mysearcher.search(myquery, limit=10)
but with a time limt...

Create a TopCollector
c = mysearcher.collector(limit=10)

Wrap it with a TimeLimitedCollector with a time limit of
10.5 seconds
from whoosh.collectors import TimeLimitedCollector
c = TimeLimitCollector(c, 10.5)

Search using the custom collector
results = mysearcher.search_with_collector(myquery, c)

	
context(**kwargs)

	Generates a SearchContext for this searcher.

	
correct_query(q, qstring, correctors=None, terms=None, maxdist=2, prefix=0, aliases=None)

	Returns a corrected version of the given user query using a default
whoosh.spelling.ReaderCorrector.

The default:

	Corrects any words that don’t appear in the index.

	Takes suggestions from the words in the index. To make certain fields
use custom correctors, use the correctors argument to pass a
dictionary mapping field names to whoosh.spelling.Corrector
objects.

Expert users who want more sophisticated correction behavior can create
a custom whoosh.spelling.QueryCorrector and use that instead
of this method.

Returns a whoosh.spelling.Correction object with a query
attribute containing the corrected whoosh.query.Query object
and a string attributes containing the corrected query string.

>>> from whoosh import qparser, highlight
>>> qtext = 'mary "litle lamb"'
>>> q = qparser.QueryParser("text", myindex.schema)
>>> mysearcher = myindex.searcher()
>>> correction = mysearcher().correct_query(q, qtext)
>>> correction.query
<query.And ...>
>>> correction.string
'mary "little lamb"'
>>> mysearcher.close()

You can use the Correction object’s format_string method to
format the corrected query string using a
whoosh.highlight.Formatter object. For example, you can format
the corrected string as HTML, emphasizing the changed words.

>>> hf = highlight.HtmlFormatter(classname="change")
>>> correction.format_string(hf)
'mary "<strong class="change term0">little lamb"'

	Parameters:	
	q – the whoosh.query.Query object to correct.

	qstring – the original user query from which the query object was
created. You can pass None instead of a string, in which the
second item in the returned tuple will also be None.

	correctors – an optional dictionary mapping fieldnames to
whoosh.spelling.Corrector objects. By default, this method
uses the contents of the index to spell check the terms in the
query. You can use this argument to “override” some fields with a
different correct, for example a
whoosh.spelling.GraphCorrector.

	terms – a sequence of ("fieldname", "text") tuples to correct
in the query. By default, this method corrects terms that don’t
appear in the index. You can use this argument to override that
behavior and explicitly specify the terms that should be corrected.

	maxdist – the maximum number of “edits” (insertions, deletions,
subsitutions, or transpositions of letters) allowed between the
original word and any suggestion. Values higher than 2 may be
slow.

	prefix – suggested replacement words must share this number of
initial characters with the original word. Increasing this even to
just 1 can dramatically speed up suggestions, and may be
justifiable since spellling mistakes rarely involve the first
letter of a word.

	aliases – an optional dictionary mapping field names in the query
to different field names to use as the source of spelling
suggestions. The mappings in correctors are applied after this.

	Return type:	whoosh.spelling.Correction

	
doc_count()

	Returns the number of UNDELETED documents in the index.

	
doc_count_all()

	Returns the total number of documents, DELETED OR UNDELETED, in
the index.

	
docs_for_query(q, for_deletion=False)

	Returns an iterator of document numbers for documents matching the
given whoosh.query.Query object.

	
document(**kw)

	Convenience method returns the stored fields of a document
matching the given keyword arguments, where the keyword keys are
field names and the values are terms that must appear in the field.

This method is equivalent to:

searcher.stored_fields(searcher.document_number(<keyword args>))

Where Searcher.documents() returns a generator, this function returns
either a dictionary or None. Use it when you assume the given keyword
arguments either match zero or one documents (i.e. at least one of the
fields is a unique key).

>>> stored_fields = searcher.document(path=u"/a/b")
>>> if stored_fields:
... print(stored_fields['title'])
... else:
... print("There is no document with the path /a/b")

	
document_number(**kw)

	Returns the document number of the document matching the given
keyword arguments, where the keyword keys are field names and the
values are terms that must appear in the field.

>>> docnum = searcher.document_number(path=u"/a/b")

Where Searcher.document_numbers() returns a generator, this function
returns either an int or None. Use it when you assume the given keyword
arguments either match zero or one documents (i.e. at least one of the
fields is a unique key).

	Return type:	int [https://docs.python.org/2/library/functions.html#int]

	
document_numbers(**kw)

	Returns a generator of the document numbers for documents matching
the given keyword arguments, where the keyword keys are field names and
the values are terms that must appear in the field. If you do not
specify any arguments (Searcher.document_numbers()), this method
will yield all document numbers.

>>> docnums = list(searcher.document_numbers(emailto="matt@whoosh.ca"))

	
documents(**kw)

	Convenience method returns the stored fields of a document
matching the given keyword arguments, where the keyword keys are field
names and the values are terms that must appear in the field.

Returns a generator of dictionaries containing the stored fields of any
documents matching the keyword arguments. If you do not specify any
arguments (Searcher.documents()), this method will yield all
documents.

>>> for stored_fields in searcher.documents(emailto=u"matt@whoosh.ca"):
... print("Email subject:", stored_fields['subject'])

	
get_parent()

	Returns the parent of this searcher (if has_parent() is True), or
else self.

	
idf(fieldname, text)

	Calculates the Inverse Document Frequency of the current term (calls
idf() on the searcher’s Weighting object).

	
key_terms(docnums, fieldname, numterms=5, model=<class 'whoosh.classify.Bo1Model'>, normalize=True)

	Returns the ‘numterms’ most important terms from the documents
listed (by number) in ‘docnums’. You can get document numbers for the
documents your interested in with the document_number() and
document_numbers() methods.

“Most important” is generally defined as terms that occur frequently in
the top hits but relatively infrequently in the collection as a whole.

>>> docnum = searcher.document_number(path=u"/a/b")
>>> keywords_and_scores = searcher.key_terms([docnum], "content")

This method returns a list of (“term”, score) tuples. The score may be
useful if you want to know the “strength” of the key terms, however to
just get the terms themselves you can just do this:

>>> kws = [kw for kw, score in searcher.key_terms([docnum], "content")]

	Parameters:	
	fieldname – Look at the terms in this field. This field must
store vectors.

	docnums – A sequence of document numbers specifying which
documents to extract key terms from.

	numterms – Return this number of important terms.

	model – The classify.ExpansionModel to use. See the classify
module.

	normalize – normalize the scores.

	Returns:	a list of (“term”, score) tuples.

	
key_terms_from_text(fieldname, text, numterms=5, model=<class 'whoosh.classify.Bo1Model'>, normalize=True)

	Return the ‘numterms’ most important terms from the given text.

	Parameters:	
	numterms – Return this number of important terms.

	model – The classify.ExpansionModel to use. See the classify
module.

	
more_like(docnum, fieldname, text=None, top=10, numterms=5, model=<class 'whoosh.classify.Bo1Model'>, normalize=False, filter=None)

	Returns a Results object containing documents similar to
the given document, based on “key terms” in the given field:

Get the ID for the document you're interested in
docnum = search.document_number(path=u"/a/b/c")

r = searcher.more_like(docnum)

print("Documents like", searcher.stored_fields(docnum)["title"])
for hit in r:
 print(hit["title"])

	Parameters:	
	fieldname – the name of the field to use to test similarity.

	text – by default, the method will attempt to load the contents
of the field from the stored fields for the document, or from a
term vector. If the field isn’t stored or vectored in the index,
but you have access to the text another way (for example, loading
from a file or a database), you can supply it using the text
parameter.

	top – the number of results to return.

	numterms – the number of “key terms” to extract from the hit and
search for. Using more terms is slower but gives potentially more
and more accurate results.

	model – (expert) a whoosh.classify.ExpansionModel to use
to compute “key terms”.

	normalize – whether to normalize term weights.

	filter – a query, Results object, or set of docnums. The results
will only contain documents that are also in the filter object.

	
postings(fieldname, text, weighting=None, qf=1)

	Returns a whoosh.matching.Matcher for the postings of the
given term. Unlike the whoosh.reading.IndexReader.postings()
method, this method automatically sets the scoring functions on the
matcher from the searcher’s weighting object.

	
reader()

	Returns the underlying IndexReader.

	
refresh()

	Returns a fresh searcher for the latest version of the index:

my_searcher = my_searcher.refresh()

If the index has not changed since this searcher was created, this
searcher is simply returned.

This method may CLOSE underlying resources that are no longer needed
by the refreshed searcher, so you CANNOT continue to use the original
searcher after calling refresh() on it.

	
search(q, **kwargs)

	Runs a whoosh.query.Query object on this searcher and
returns a Results object. See How to search for more
information.

This method takes many keyword arguments (documented below).

See Sorting and faceting for information on using sortedby and/or
groupedby. See Collapsing results for more information on using
collapse, collapse_limit, and collapse_order.

	Parameters:	
	query – a whoosh.query.Query object to use to match
documents.

	limit – the maximum number of documents to score. If you’re only
interested in the top N documents, you can set limit=N to limit the
scoring for a faster search. Default is 10.

	scored – whether to score the results. Overriden by sortedby.
If both scored=False and sortedby=None, the results will be
in arbitrary order, but will usually be computed faster than
scored or sorted results.

	sortedby – see Sorting and faceting.

	reverse – Reverses the direction of the sort. Default is False.

	groupedby – see Sorting and faceting.

	optimize – use optimizations to get faster results when possible.
Default is True.

	filter – a query, Results object, or set of docnums. The results
will only contain documents that are also in the filter object.

	mask – a query, Results object, or set of docnums. The results
will not contain any documents that are in the mask object.

	terms – if True, record which terms were found in each matching
document. See How to search for more information. Default is
False.

	maptype – by default, the results of faceting with groupedby
is a dictionary mapping group names to ordered lists of document
numbers in the group. You can pass a
whoosh.sorting.FacetMap subclass to this keyword argument
to specify a different (usually faster) method for grouping. For
example, maptype=sorting.Count would store only the count of
documents in each group, instead of the full list of document IDs.

	collapse – a facet to use to collapse the
results. See Collapsing results for more information.

	collapse_limit – the maximum number of documents to allow with
the same collapse key. See Collapsing results for more information.

	collapse_order – an optional ordering facet
to control which documents are kept when collapsing. The default
(collapse_order=None) uses the results order (e.g. the highest
scoring documents in a scored search).

	Return type:	Results

	
search_page(query, pagenum, pagelen=10, **kwargs)

	This method is Like the Searcher.search() method, but returns
a ResultsPage object. This is a convenience function for
getting a certain “page” of the results for the given query, which is
often useful in web search interfaces.

For example:

querystring = request.get("q")
query = queryparser.parse("content", querystring)

pagenum = int(request.get("page", 1))
pagelen = int(request.get("perpage", 10))

results = searcher.search_page(query, pagenum, pagelen=pagelen)
print("Page %d of %d" % (results.pagenum, results.pagecount))
print("Showing results %d-%d of %d"
 % (results.offset + 1, results.offset + results.pagelen + 1,
 len(results)))
for hit in results:
 print("%d: %s" % (hit.rank + 1, hit["title"]))

(Note that results.pagelen might be less than the pagelen argument if
there aren’t enough results to fill a page.)

Any additional keyword arguments you supply are passed through to
Searcher.search(). For example, you can get paged results of a
sorted search:

results = searcher.search_page(q, 2, sortedby="date", reverse=True)

Currently, searching for page 100 with pagelen of 10 takes the same
amount of time as using Searcher.search() to find the first 1000
results. That is, this method does not have any special optimizations
or efficiencies for getting a page from the middle of the full results
list. (A future enhancement may allow using previous page results to
improve the efficiency of finding the next page.)

This method will raise a ValueError if you ask for a page number
higher than the number of pages in the resulting query.

	Parameters:	
	query – the whoosh.query.Query object to match.

	pagenum – the page number to retrieve, starting at 1 for the
first page.

	pagelen – the number of results per page.

	Returns:	ResultsPage

	
search_with_collector(q, collector, context=None)

	Low-level method: runs a whoosh.query.Query object on this
searcher using the given whoosh.collectors.Collector object
to collect the results:

myquery = query.Term("content", "cabbage")

uc = collectors.UnlimitedCollector()
tc = TermsCollector(uc)

mysearcher.search_with_collector(myquery, tc)
print(tc.docterms)
print(tc.results())

Note that this method does not return a Results object. You
need to access the collector to get a results object or other
information the collector might hold after the search.

	Parameters:	
	q – a whoosh.query.Query object to use to match
documents.

	collector – a whoosh.collectors.Collector object to feed
the results into.

	
suggest(fieldname, text, limit=5, maxdist=2, prefix=0)

	Returns a sorted list of suggested corrections for the given
mis-typed word text based on the contents of the given field:

>>> searcher.suggest("content", "specail")
["special"]

This is a convenience method. If you are planning to get suggestions
for multiple words in the same field, it is more efficient to get a
Corrector object and use it directly:

corrector = searcher.corrector("fieldname")
for word in words:
 print(corrector.suggest(word))

	Parameters:	
	limit – only return up to this many suggestions. If there are not
enough terms in the field within maxdist of the given word, the
returned list will be shorter than this number.

	maxdist – the largest edit distance from the given word to look
at. Numbers higher than 2 are not very effective or efficient.

	prefix – require suggestions to share a prefix of this length
with the given word. This is often justifiable since most
misspellings do not involve the first letter of the word. Using a
prefix dramatically decreases the time it takes to generate the
list of words.

	
up_to_date()

	Returns True if this Searcher represents the latest version of the
index, for backends that support versioning.

Results classes

	
class whoosh.searching.Results(searcher, q, top_n, docset=None, facetmaps=None, runtime=0, highlighter=None)

	This object is returned by a Searcher. This object represents the
results of a search query. You can mostly use it as if it was a list of
dictionaries, where each dictionary is the stored fields of the document at
that position in the results.

Note that a Results object keeps a reference to the Searcher that created
it, so keeping a reference to a Results object keeps the Searcher alive and
so keeps all files used by it open.

	Parameters:	
	searcher – the Searcher object that produced these
results.

	query – the original query that created these results.

	top_n – a list of (score, docnum) tuples representing the top
N search results.

	
copy()

	Returns a deep copy of this results object.

	
docnum(n)

	Returns the document number of the result at position n in the list
of ranked documents.

	
docs()

	Returns a set-like object containing the document numbers that
matched the query.

	
estimated_length()

	The estimated maximum number of matching documents, or the
exact number of matching documents if it’s known.

	
estimated_min_length()

	The estimated minimum number of matching documents, or the
exact number of matching documents if it’s known.

	
extend(results)

	Appends hits from ‘results’ (that are not already in this
results object) to the end of these results.

	Parameters:	results – another results object.

	
facet_names()

	Returns the available facet names, for use with the groups()
method.

	
fields(n)

	Returns the stored fields for the document at the n th position
in the results. Use Results.docnum() if you want the raw
document number instead of the stored fields.

	
filter(results)

	Removes any hits that are not also in the other results object.

	
groups(name=None)

	If you generated facet groupings for the results using the
groupedby keyword argument to the search() method, you can use
this method to retrieve the groups. You can use the facet_names()
method to get the list of available facet names.

>>> results = searcher.search(my_query, groupedby=["tag", "price"])
>>> results.facet_names()
["tag", "price"]
>>> results.groups("tag")
{"new": [12, 1, 4], "apple": [3, 10, 5], "search": [11]}

If you only used one facet, you can call the method without a facet
name to get the groups for the facet.

>>> results = searcher.search(my_query, groupedby="tag")
>>> results.groups()
{"new": [12, 1, 4], "apple": [3, 10, 5, 0], "search": [11]}

By default, this returns a dictionary mapping category names to a list
of document numbers, in the same relative order as they appear in the
results.

>>> results = mysearcher.search(myquery, groupedby="tag")
>>> docnums = results.groups()
>>> docnums['new']
[12, 1, 4]

You can then use Searcher.stored_fields() to get the stored
fields associated with a document ID.

If you specified a different maptype for the facet when you
searched, the values in the dictionary depend on the
whoosh.sorting.FacetMap.

>>> myfacet = sorting.FieldFacet("tag", maptype=sorting.Count)
>>> results = mysearcher.search(myquery, groupedby=myfacet)
>>> counts = results.groups()
{"new": 3, "apple": 4, "search": 1}

	
has_exact_length()

	Returns True if this results object already knows the exact number
of matching documents.

	
has_matched_terms()

	Returns True if the search recorded which terms matched in which
documents.

>>> r = searcher.search(myquery)
>>> r.has_matched_terms()
False
>>>

	
is_empty()

	Returns True if not documents matched the query.

	
items()

	Returns an iterator of (docnum, score) pairs for the scored
documents in the results.

	
key_terms(fieldname, docs=10, numterms=5, model=<class 'whoosh.classify.Bo1Model'>, normalize=True)

	Returns the ‘numterms’ most important terms from the top ‘docs’
documents in these results. “Most important” is generally defined as
terms that occur frequently in the top hits but relatively infrequently
in the collection as a whole.

	Parameters:	
	fieldname – Look at the terms in this field. This field must
store vectors.

	docs – Look at this many of the top documents of the results.

	numterms – Return this number of important terms.

	model – The classify.ExpansionModel to use. See the classify
module.

	Returns:	list of unicode strings.

	
matched_terms()

	Returns the set of ("fieldname", "text") tuples representing
terms from the query that matched one or more of the TOP N documents
(this does not report terms for documents that match the query but did
not score high enough to make the top N results). You can compare this
set to the terms from the original query to find terms which didn’t
occur in any matching documents.

This is only valid if you used terms=True in the search call to
record matching terms. Otherwise it will raise an exception.

>>> q = myparser.parse("alfa OR bravo OR charlie")
>>> results = searcher.search(q, terms=True)
>>> results.terms()
set([("content", "alfa"), ("content", "charlie")])
>>> q.all_terms() - results.terms()
set([("content", "bravo")])

	
score(n)

	Returns the score for the document at the Nth position in the list
of ranked documents. If the search was not scored, this may return
None.

	
scored_length()

	Returns the number of scored documents in the results, equal to or
less than the limit keyword argument to the search.

>>> r = mysearcher.search(myquery, limit=20)
>>> len(r)
1246
>>> r.scored_length()
20

This may be fewer than the total number of documents that match the
query, which is what len(Results) returns.

	
upgrade(results, reverse=False)

	Re-sorts the results so any hits that are also in ‘results’ appear
before hits not in ‘results’, otherwise keeping their current relative
positions. This does not add the documents in the other results object
to this one.

	Parameters:	
	results – another results object.

	reverse – if True, lower the position of hits in the other
results object instead of raising them.

	
upgrade_and_extend(results)

	Combines the effects of extend() and upgrade(): hits that are also
in ‘results’ are raised. Then any hits from the other results object
that are not in this results object are appended to the end.

	Parameters:	results – another results object.

	
class whoosh.searching.Hit(results, docnum, pos=None, score=None)

	Represents a single search result (“hit”) in a Results object.

This object acts like a dictionary of the matching document’s stored
fields. If for some reason you need an actual dict object, use
Hit.fields() to get one.

>>> r = searcher.search(query.Term("content", "render"))
>>> r[0]
< Hit {title = u"Rendering the scene"} >
>>> r[0].rank
0
>>> r[0].docnum == 4592
True
>>> r[0].score
2.52045682
>>> r[0]["title"]
"Rendering the scene"
>>> r[0].keys()
["title"]

	Parameters:	
	results – the Results object this hit belongs to.

	pos – the position in the results list of this hit, for example
pos = 0 means this is the first (highest scoring) hit.

	docnum – the document number of this hit.

	score – the score of this hit.

	
fields()

	Returns a dictionary of the stored fields of the document this
object represents.

	
highlights(fieldname, text=None, top=3, minscore=1)

	Returns highlighted snippets from the given field:

r = searcher.search(myquery)
for hit in r:
 print(hit["title"])
 print(hit.highlights("content"))

See How to create highlighted search result excerpts.

To change the fragmeter, formatter, order, or scorer used in
highlighting, you can set attributes on the results object:

from whoosh import highlight

results = searcher.search(myquery, terms=True)
results.fragmenter = highlight.SentenceFragmenter()

...or use a custom whoosh.highlight.Highlighter object:

hl = highlight.Highlighter(fragmenter=sf)
results.highlighter = hl

	Parameters:	
	fieldname – the name of the field you want to highlight.

	text – by default, the method will attempt to load the contents
of the field from the stored fields for the document. If the field
you want to highlight isn’t stored in the index, but you have
access to the text another way (for example, loading from a file or
a database), you can supply it using the text parameter.

	top – the maximum number of fragments to return.

	minscore – the minimum score for fragments to appear in the
highlights.

	
matched_terms()

	Returns the set of ("fieldname", "text") tuples representing
terms from the query that matched in this document. You can
compare this set to the terms from the original query to find terms
which didn’t occur in this document.

This is only valid if you used terms=True in the search call to
record matching terms. Otherwise it will raise an exception.

>>> q = myparser.parse("alfa OR bravo OR charlie")
>>> results = searcher.search(q, terms=True)
>>> for hit in results:
... print(hit["title"])
... print("Contains:", hit.matched_terms())
... print("Doesn't contain:", q.all_terms() - hit.matched_terms())

	
more_like_this(fieldname, text=None, top=10, numterms=5, model=<class 'whoosh.classify.Bo1Model'>, normalize=True, filter=None)

	Returns a new Results object containing documents similar to this
hit, based on “key terms” in the given field:

r = searcher.search(myquery)
for hit in r:
 print(hit["title"])
 print("Top 3 similar documents:")
 for subhit in hit.more_like_this("content", top=3):
 print(" ", subhit["title"])

	Parameters:	
	fieldname – the name of the field to use to test similarity.

	text – by default, the method will attempt to load the contents
of the field from the stored fields for the document, or from a
term vector. If the field isn’t stored or vectored in the index,
but you have access to the text another way (for example, loading
from a file or a database), you can supply it using the text
parameter.

	top – the number of results to return.

	numterms – the number of “key terms” to extract from the hit and
search for. Using more terms is slower but gives potentially more
and more accurate results.

	model – (expert) a whoosh.classify.ExpansionModel to use
to compute “key terms”.

	normalize – whether to normalize term weights.

	
class whoosh.searching.ResultsPage(results, pagenum, pagelen=10)

	Represents a single page out of a longer list of results, as returned
by whoosh.searching.Searcher.search_page(). Supports a subset of the
interface of the Results object, namely getting
stored fields with __getitem__ (square brackets), iterating, and the
score() and docnum() methods.

The offset attribute contains the results number this page starts at
(numbered from 0). For example, if the page length is 10, the offset
attribute on the second page will be 10.

The pagecount attribute contains the number of pages available.

The pagenum attribute contains the page number. This may be less than
the page you requested if the results had too few pages. For example, if
you do:

ResultsPage(results, 5)

but the results object only contains 3 pages worth of hits, pagenum
will be 3.

The pagelen attribute contains the number of results on this page
(which may be less than the page length you requested if this is the last
page of the results).

The total attribute contains the total number of hits in the results.

>>> mysearcher = myindex.searcher()
>>> pagenum = 2
>>> page = mysearcher.find_page(pagenum, myquery)
>>> print("Page %s of %s, results %s to %s of %s" %
... (pagenum, page.pagecount, page.offset+1,
... page.offset+page.pagelen, page.total))
>>> for i, fields in enumerate(page):
... print("%s. %r" % (page.offset + i + 1, fields))
>>> mysearcher.close()

To set highlighter attributes (for example formatter), access the
underlying Results object:

page.results.formatter = highlight.UppercaseFormatter()

	Parameters:	
	results – a Results object.

	pagenum – which page of the results to use, numbered from 1.

	pagelen – the number of hits per page.

	
docnum(n)

	Returns the document number of the hit at the nth position on this
page.

	
is_last_page()

	Returns True if this object represents the last page of results.

	
score(n)

	Returns the score of the hit at the nth position on this page.

Exceptions

	
exception whoosh.searching.NoTermsException

	Exception raised you try to access matched terms on a Results
object was created without them. To record which terms matched in which
document, you need to call the Searcher.search() method with
terms=True.

	
exception whoosh.searching.TimeLimit

	Raised by TimeLimitedCollector if the time limit is reached
before the search finishes. If you have a reference to the collector, you
can get partial results by calling TimeLimitedCollector.results().

sorting module

Base types

	
class whoosh.sorting.FacetType

	Base class for “facets”, aspects that can be sorted/faceted.

	
categorizer(global_searcher)

	Returns a Categorizer corresponding to this facet.

	Parameters:	global_searcher – A parent searcher. You can use this searcher if
you need global document ID references.

	
class whoosh.sorting.Categorizer

	Base class for categorizer objects which compute a key value for a
document based on certain criteria, for use in sorting/faceting.

Categorizers are created by FacetType objects through the
FacetType.categorizer() method. The
whoosh.searching.Searcher object passed to the categorizer
method may be a composite searcher (that is, wrapping a multi-reader), but
categorizers are always run per-segment, with segment-relative document
numbers.

The collector will call a categorizer’s set_searcher method as it
searches each segment to let the cateogorizer set up whatever segment-
specific data it needs.

Collector.allow_overlap should be True if the caller can use the
keys_for method instead of key_for to group documents into
potentially overlapping groups. The default is False.

If a categorizer subclass can categorize the document using only the
document number, it should set Collector.needs_current to False
(this is the default) and NOT USE the given matcher in the key_for or
keys_for methods, since in that case segment_docnum is not
guaranteed to be consistent with the given matcher. If a categorizer
subclass needs to access information on the matcher, it should set
needs_current to True. This will prevent the caller from using
optimizations that might leave the matcher in an inconsistent state.

	
key_for(matcher, segment_docnum)

	Returns a key for the current match.

	Parameters:	
	matcher – a whoosh.matching.Matcher object. If
self.needs_current is False, DO NOT use this object,
since it may be inconsistent. Use the given segment_docnum
instead.

	segment_docnum – the segment-relative document number of the
current match.

	
key_to_name(key)

	Returns a representation of the key to be used as a dictionary key
in faceting. For example, the sorting key for date fields is a large
integer; this method translates it into a datetime object to make
the groupings clearer.

	
keys_for(matcher, segment_docnum)

	Yields a series of keys for the current match.

This method will be called instead of key_for if
self.allow_overlap is True.

	Parameters:	
	matcher – a whoosh.matching.Matcher object. If
self.needs_current is False, DO NOT use this object,
since it may be inconsistent. Use the given segment_docnum
instead.

	segment_docnum – the segment-relative document number of the
current match.

	
set_searcher(segment_searcher, docoffset)

	Called by the collector when the collector moves to a new segment.
The segment_searcher will be atomic. The docoffset is the
offset of the segment’s document numbers relative to the entire index.
You can use the offset to get absolute index docnums by adding the
offset to segment-relative docnums.

Facet types

	
class whoosh.sorting.FieldFacet(fieldname, reverse=False, allow_overlap=False, maptype=None)

	Sorts/facets by the contents of a field.

For example, to sort by the contents of the “path” field in reverse order,
and facet by the contents of the “tag” field:

paths = FieldFacet("path", reverse=True)
tags = FieldFacet("tag")
results = searcher.search(myquery, sortedby=paths, groupedby=tags)

This facet returns different categorizers based on the field type.

	Parameters:	
	fieldname – the name of the field to sort/facet on.

	reverse – if True, when sorting, reverse the sort order of this
facet.

	allow_overlap – if True, when grouping, allow documents to appear
in multiple groups when they have multiple terms in the field.

	
class whoosh.sorting.QueryFacet(querydict, other=None, allow_overlap=False, maptype=None)

	Sorts/facets based on the results of a series of queries.

	Parameters:	
	querydict – a dictionary mapping keys to
whoosh.query.Query objects.

	other – the key to use for documents that don’t match any of the
queries.

	
class whoosh.sorting.RangeFacet(fieldname, start, end, gap, hardend=False, maptype=None)

	Sorts/facets based on numeric ranges. For textual ranges, use
QueryFacet.

For example, to facet the “price” field into $100 buckets, up to $1000:

prices = RangeFacet("price", 0, 1000, 100)
results = searcher.search(myquery, groupedby=prices)

The ranges/buckets are always inclusive at the start and exclusive
at the end.

	Parameters:	
	fieldname – the numeric field to sort/facet on.

	start – the start of the entire range.

	end – the end of the entire range.

	gap – the size of each “bucket” in the range. This can be a
sequence of sizes. For example, gap=[1,5,10] will use 1 as the
size of the first bucket, 5 as the size of the second bucket, and
10 as the size of all subsequent buckets.

	hardend – if True, the end of the last bucket is clamped to the
value of end. If False (the default), the last bucket is always
gap sized, even if that means the end of the last bucket is
after end.

	
class whoosh.sorting.DateRangeFacet(fieldname, start, end, gap, hardend=False, maptype=None)

	Sorts/facets based on date ranges. This is the same as RangeFacet
except you are expected to use daterange objects as the start and end
of the range, and timedelta or relativedelta objects as the gap(s),
and it generates DateRange queries instead of
TermRange queries.

For example, to facet a “birthday” range into 5 year buckets:

from datetime import datetime
from whoosh.support.relativedelta import relativedelta

startdate = datetime(1920, 0, 0)
enddate = datetime.now()
gap = relativedelta(years=5)
bdays = DateRangeFacet("birthday", startdate, enddate, gap)
results = searcher.search(myquery, groupedby=bdays)

The ranges/buckets are always inclusive at the start and exclusive
at the end.

	Parameters:	
	fieldname – the numeric field to sort/facet on.

	start – the start of the entire range.

	end – the end of the entire range.

	gap – the size of each “bucket” in the range. This can be a
sequence of sizes. For example, gap=[1,5,10] will use 1 as the
size of the first bucket, 5 as the size of the second bucket, and
10 as the size of all subsequent buckets.

	hardend – if True, the end of the last bucket is clamped to the
value of end. If False (the default), the last bucket is always
gap sized, even if that means the end of the last bucket is
after end.

	
class whoosh.sorting.ScoreFacet

	Uses a document’s score as a sorting criterion.

For example, to sort by the tag field, and then within that by relative
score:

tag_score = MultiFacet(["tag", ScoreFacet()])
results = searcher.search(myquery, sortedby=tag_score)

	
class whoosh.sorting.FunctionFacet(fn, maptype=None)

	This facet type is low-level. In most cases you should use
TranslateFacet instead.

This facet type ets you pass an arbitrary function that will compute the
key. This may be easier than subclassing FacetType and Categorizer to set up
the desired behavior.

The function is called with the arguments (searcher, docid), where the
searcher may be a composite searcher, and the docid is an absolute
index document number (not segment-relative).

For example, to use the number of words in the document’s “content” field
as the sorting/faceting key:

fn = lambda s, docid: s.doc_field_length(docid, "content")
lengths = FunctionFacet(fn)

	
class whoosh.sorting.MultiFacet(items=None, maptype=None)

	Sorts/facets by the combination of multiple “sub-facets”.

For example, to sort by the value of the “tag” field, and then (for
documents where the tag is the same) by the value of the “path” field:

facet = MultiFacet([FieldFacet("tag"), FieldFacet("path")])
results = searcher.search(myquery, sortedby=facet)

As a shortcut, you can use strings to refer to field names, and they will
be assumed to be field names and turned into FieldFacet objects:

facet = MultiFacet(["tag", "path"])

You can also use the add_* methods to add criteria to the multifacet:

facet = MultiFacet()
facet.add_field("tag")
facet.add_field("path", reverse=True)
facet.add_query({"a-m": TermRange("name", "a", "m"),
 "n-z": TermRange("name", "n", "z")})

	
class whoosh.sorting.StoredFieldFacet(fieldname, allow_overlap=False, split_fn=None, maptype=None)

	Lets you sort/group using the value in an unindexed, stored field (e.g.
whoosh.fields.STORED). This is usually slower than using an indexed
field.

For fields where the stored value is a space-separated list of keywords,
(e.g. "tag1 tag2 tag3"), you can use the allow_overlap keyword
argument to allow overlapped faceting on the result of calling the
split() method on the field value (or calling a custom split function
if one is supplied).

	Parameters:	
	fieldname – the name of the stored field.

	allow_overlap – if True, when grouping, allow documents to appear
in multiple groups when they have multiple terms in the field. The
categorizer uses string.split() or the custom split_fn to
convert the stored value into a list of facet values.

	split_fn – a custom function to split a stored field value into
multiple facet values when allow_overlap is True. If not
supplied, the categorizer simply calls the value’s split()
method.

Facets object

	
class whoosh.sorting.Facets(x=None)

	Maps facet names to FacetType objects, for creating multiple
groupings of documents.

For example, to group by tag, and also group by price range:

facets = Facets()
facets.add_field("tag")
facets.add_facet("price", RangeFacet("price", 0, 1000, 100))
results = searcher.search(myquery, groupedby=facets)

tag_groups = results.groups("tag")
price_groups = results.groups("price")

(To group by the combination of multiple facets, use MultiFacet.)

	
add_facet(name, facet)

	Adds a FacetType object under the given name.

	
add_facets(facets, replace=True)

	Adds the contents of the given Facets or dict object to this
object.

	
add_field(fieldname, **kwargs)

	Adds a FieldFacet for the given field name (the field name
is automatically used as the facet name).

	
add_query(name, querydict, **kwargs)

	Adds a QueryFacet under the given name.

	Parameters:	
	name – a name for the facet.

	querydict – a dictionary mapping keys to
whoosh.query.Query objects.

	
items()

	Returns a list of (facetname, facetobject) tuples for the facets in
this object.

	
names()

	Returns an iterator of the facet names in this object.

FacetType objects

	
class whoosh.sorting.FacetMap

	Base class for objects holding the results of grouping search results by
a Facet. Use an object’s as_dict() method to access the results.

You can pass a subclass of this to the maptype keyword argument when
creating a FacetType object to specify what information the facet
should record about the group. For example:

Record each document in each group in its sorted order
myfacet = FieldFacet("size", maptype=OrderedList)

Record only the count of documents in each group
myfacet = FieldFacet("size", maptype=Count)

	
add(groupname, docid, sortkey)

	Adds a document to the facet results.

	Parameters:	
	groupname – the name of the group to add this document to.

	docid – the document number of the document to add.

	sortkey – a value representing the sort position of the document
in the full results.

	
as_dict()

	Returns a dictionary object mapping group names to
implementation-specific values. For example, the value might be a list
of document numbers, or a integer representing the number of documents
in the group.

	
class whoosh.sorting.OrderedList

	Stores a list of document numbers for each group, in the same order as
they appear in the search results.

The as_dict method returns a dictionary mapping group names to lists
of document numbers.

	
class whoosh.sorting.UnorderedList

	Stores a list of document numbers for each group, in arbitrary order.
This is slightly faster and uses less memory than
OrderedListResult if you don’t care about the ordering of the
documents within groups.

The as_dict method returns a dictionary mapping group names to lists
of document numbers.

	
class whoosh.sorting.Count

	Stores the number of documents in each group.

The as_dict method returns a dictionary mapping group names to
integers.

	
class whoosh.sorting.Best

	Stores the “best” document in each group (that is, the one with the
highest sort key).

The as_dict method returns a dictionary mapping group names to
docnument numbers.

spelling module

See correcting errors in user queries.

This module contains helper functions for correcting typos in user queries.

Corrector objects

	
class whoosh.spelling.Corrector

	Base class for spelling correction objects. Concrete sub-classes should
implement the _suggestions method.

	
suggest(text, limit=5, maxdist=2, prefix=0)

	

	Parameters:	
	text – the text to check. This word will not be added to the
suggestions, even if it appears in the word graph.

	limit – only return up to this many suggestions. If there are not
enough terms in the field within maxdist of the given word, the
returned list will be shorter than this number.

	maxdist – the largest edit distance from the given word to look
at. Values higher than 2 are not very effective or efficient.

	prefix – require suggestions to share a prefix of this length
with the given word. This is often justifiable since most
misspellings do not involve the first letter of the word. Using a
prefix dramatically decreases the time it takes to generate the
list of words.

	
class whoosh.spelling.ReaderCorrector(reader, fieldname, fieldobj)

	Suggests corrections based on the content of a field in a reader.

Ranks suggestions by the edit distance, then by highest to lowest
frequency.

	
class whoosh.spelling.MultiCorrector(correctors, op)

	Merges suggestions from a list of sub-correctors.

QueryCorrector objects

	
class whoosh.spelling.QueryCorrector(fieldname)

	Base class for objects that correct words in a user query.

	
correct_query(q, qstring)

	Returns a Correction object representing the corrected
form of the given query.

	Parameters:	
	q – the original whoosh.query.Query tree to be
corrected.

	qstring – the original user query. This may be None if the
original query string is not available, in which case the
Correction.string attribute will also be None.

	Return type:	Correction

	
class whoosh.spelling.SimpleQueryCorrector(correctors, terms, aliases=None, prefix=0, maxdist=2)

	A simple query corrector based on a mapping of field names to
Corrector objects, and a list of ("fieldname", "text") tuples
to correct. And terms in the query that appear in list of term tuples are
corrected using the appropriate corrector.

	Parameters:	
	correctors – a dictionary mapping field names to
Corrector objects.

	terms – a sequence of ("fieldname", "text") tuples
representing terms to be corrected.

	aliases – a dictionary mapping field names in the query to
field names for spelling suggestions.

	prefix – suggested replacement words must share this number of
initial characters with the original word. Increasing this even to
just 1 can dramatically speed up suggestions, and may be
justifiable since spellling mistakes rarely involve the first
letter of a word.

	maxdist – the maximum number of “edits” (insertions, deletions,
subsitutions, or transpositions of letters) allowed between the
original word and any suggestion. Values higher than 2 may be
slow.

	
class whoosh.spelling.Correction(q, qstring, corr_q, tokens)

	Represents the corrected version of a user query string. Has the
following attributes:

	query

	The corrected whoosh.query.Query object.

	string

	The corrected user query string.

	original_query

	The original whoosh.query.Query object that was corrected.

	original_string

	The original user query string.

	tokens

	A list of token objects representing the corrected words.

You can also use the Correction.format_string() method to reformat the
corrected query string using a whoosh.highlight.Formatter class.
For example, to display the corrected query string as HTML with the
changed words emphasized:

from whoosh import highlight

correction = mysearcher.correct_query(q, qstring)

hf = highlight.HtmlFormatter(classname="change")
html = correction.format_string(hf)

support.charset module

This module contains tools for working with Sphinx charset table files. These files
are useful for doing case and accent folding.
See whoosh.analysis.CharsetTokenizer and whoosh.analysis.CharsetFilter.

	
whoosh.support.charset.default_charset

	An extensive case- and accent folding charset table.
Taken from http://speeple.com/unicode-maps.txt

	
whoosh.support.charset.charset_table_to_dict(tablestring)

	Takes a string with the contents of a Sphinx charset table file and
returns a mapping object (a defaultdict, actually) of the kind expected by
the unicode.translate() method: that is, it maps a character number to a unicode
character or None if the character is not a valid word character.

The Sphinx charset table format is described at
http://www.sphinxsearch.com/docs/current.html#conf-charset-table.

support.levenshtein module

Contains functions implementing edit distance algorithms.

	
whoosh.support.levenshtein.relative(a, b)

	Returns the relative distance between two strings, in the range
[0-1] where 1 means total equality.

	
whoosh.support.levenshtein.distance(seq1, seq2, limit=None)

	Returns the Damerau-Levenshtein edit distance between two strings.

util module

	
whoosh.util.fib(n)

	Returns the nth value in the Fibonacci sequence.

	
whoosh.util.make_binary_tree(fn, args, **kwargs)

	Takes a function/class that takes two positional arguments and a list of
arguments and returns a binary tree of results/instances.

>>> make_binary_tree(UnionMatcher, [matcher1, matcher2, matcher3])
UnionMatcher(matcher1, UnionMatcher(matcher2, matcher3))

Any keyword arguments given to this function are passed to the class
initializer.

	
whoosh.util.make_weighted_tree(fn, ls, **kwargs)

	Takes a function/class that takes two positional arguments and a list of
(weight, argument) tuples and returns a huffman-like weighted tree of
results/instances.

	
whoosh.util.synchronized(func)

	Decorator for storage-access methods, which synchronizes on a threading
lock. The parent object must have ‘is_closed’ and ‘_sync_lock’ attributes.

	
whoosh.util.unclosed(method)

	Decorator to check if the object is closed.

writing module

Writer

	
class whoosh.writing.IndexWriter

	High-level object for writing to an index.

To get a writer for a particular index, call
writer() on the Index object.

>>> writer = myindex.writer()

You can use this object as a context manager. If an exception is thrown
from within the context it calls cancel() to clean up
temporary files, otherwise it calls commit() when the
context exits.

>>> with myindex.writer() as w:
... w.add_document(title="First document", content="Hello there.")
... w.add_document(title="Second document", content="This is easy!")

	
add_document(**fields)

	The keyword arguments map field names to the values to index/store:

w = myindex.writer()
w.add_document(path=u"/a", title=u"First doc", text=u"Hello")
w.commit()

Depending on the field type, some fields may take objects other than
unicode strings. For example, NUMERIC fields take numbers, and DATETIME
fields take datetime.datetime objects:

from datetime import datetime, timedelta
from whoosh import index
from whoosh.fields import *

schema = Schema(date=DATETIME, size=NUMERIC(float), content=TEXT)
myindex = index.create_in("indexdir", schema)

w = myindex.writer()
w.add_document(date=datetime.now(), size=5.5, content=u"Hello")
w.commit()

Instead of a single object (i.e., unicode string, number, or datetime),
you can supply a list or tuple of objects. For unicode strings, this
bypasses the field’s analyzer. For numbers and dates, this lets you add
multiple values for the given field:

date1 = datetime.now()
date2 = datetime(2005, 12, 25)
date3 = datetime(1999, 1, 1)
w.add_document(date=[date1, date2, date3], size=[9.5, 10],
 content=[u"alfa", u"bravo", u"charlie"])

For fields that are both indexed and stored, you can specify an
alternate value to store using a keyword argument in the form
“_stored_<fieldname>”. For example, if you have a field named “title”
and you want to index the text “a b c” but store the text “e f g”, use
keyword arguments like this:

writer.add_document(title=u"a b c", _stored_title=u"e f g")

You can boost the weight of all terms in a certain field by specifying
a _<fieldname>_boost keyword argument. For example, if you have a
field named “content”, you can double the weight of this document for
searches in the “content” field like this:

writer.add_document(content="a b c", _title_boost=2.0)

You can boost every field at once using the _boost keyword. For
example, to boost fields “a” and “b” by 2.0, and field “c” by 3.0:

writer.add_document(a="alfa", b="bravo", c="charlie",
 _boost=2.0, _c_boost=3.0)

Note that some scoring algroithms, including Whoosh’s default BM25F,
do not work with term weights less than 1, so you should generally not
use a boost factor less than 1.

See also Writer.update_document().

	
add_field(fieldname, fieldtype, **kwargs)

	Adds a field to the index’s schema.

	Parameters:	
	fieldname – the name of the field to add.

	fieldtype – an instantiated whoosh.fields.FieldType
object.

	
cancel()

	Cancels any documents/deletions added by this object
and unlocks the index.

	
commit()

	Finishes writing and unlocks the index.

	
delete_by_query(q, searcher=None)

	Deletes any documents matching a query object.

	Returns:	the number of documents deleted.

	
delete_by_term(fieldname, text, searcher=None)

	Deletes any documents containing “term” in the “fieldname” field.
This is useful when you have an indexed field containing a unique ID
(such as “pathname”) for each document.

	Returns:	the number of documents deleted.

	
delete_document(docnum, delete=True)

	Deletes a document by number.

	
end_group()

	Finish indexing a group of hierarchical documents. See
start_group().

	
group()

	Returns a context manager that calls
start_group() and end_group() for
you, allowing you to use a with statement to group hierarchical
documents:

with myindex.writer() as w:
 with w.group():
 w.add_document(kind="class", name="Accumulator")
 w.add_document(kind="method", name="add")
 w.add_document(kind="method", name="get_result")
 w.add_document(kind="method", name="close")

 with w.group():
 w.add_document(kind="class", name="Calculator")
 w.add_document(kind="method", name="add")
 w.add_document(kind="method", name="multiply")
 w.add_document(kind="method", name="get_result")
 w.add_document(kind="method", name="close")

	
reader(**kwargs)

	Returns a reader for the existing index.

	
remove_field(fieldname, **kwargs)

	Removes the named field from the index’s schema. Depending on the
backend implementation, this may or may not actually remove existing
data for the field from the index. Optimizing the index should always
clear out existing data for a removed field.

	
start_group()

	Start indexing a group of hierarchical documents. The backend should
ensure that these documents are all added to the same segment:

with myindex.writer() as w:
 w.start_group()
 w.add_document(kind="class", name="Accumulator")
 w.add_document(kind="method", name="add")
 w.add_document(kind="method", name="get_result")
 w.add_document(kind="method", name="close")
 w.end_group()

 w.start_group()
 w.add_document(kind="class", name="Calculator")
 w.add_document(kind="method", name="add")
 w.add_document(kind="method", name="multiply")
 w.add_document(kind="method", name="get_result")
 w.add_document(kind="method", name="close")
 w.end_group()

A more convenient way to group documents is to use the
group() method and the with statement.

	
update_document(**fields)

	The keyword arguments map field names to the values to index/store.

This method adds a new document to the index, and automatically deletes
any documents with the same values in any fields marked “unique” in the
schema:

schema = fields.Schema(path=fields.ID(unique=True, stored=True),
 content=fields.TEXT)
myindex = index.create_in("index", schema)

w = myindex.writer()
w.add_document(path=u"/", content=u"Mary had a lamb")
w.commit()

w = myindex.writer()
w.update_document(path=u"/", content=u"Mary had a little lamb")
w.commit()

assert myindex.doc_count() == 1

It is safe to use update_document in place of add_document; if
there is no existing document to replace, it simply does an add.

You cannot currently pass a list or tuple of values to a “unique”
field.

Because this method has to search for documents with the same unique
fields and delete them before adding the new document, it is slower
than using add_document.

	Marking more fields “unique” in the schema will make each
update_document call slightly slower.

	When you are updating multiple documents, it is faster to batch
delete all changed documents and then use add_document to add
the replacements instead of using update_document.

Note that this method will only replace a committed document;
currently it cannot replace documents you’ve added to the IndexWriter
but haven’t yet committed. For example, if you do this:

>>> writer.update_document(unique_id=u"1", content=u"Replace me")
>>> writer.update_document(unique_id=u"1", content=u"Replacement")

...this will add two documents with the same value of unique_id,
instead of the second document replacing the first.

See Writer.add_document() for information on
stored<fieldname>, _<fieldname>_boost, and _boost keyword
arguments.

Utility writers

	
class whoosh.writing.BufferedWriter(index, period=60, limit=10, writerargs=None, commitargs=None)

	Convenience class that acts like a writer but buffers added documents
before dumping the buffered documents as a batch into the actual index.

In scenarios where you are continuously adding single documents very
rapidly (for example a web application where lots of users are adding
content simultaneously), using a BufferedWriter is much faster than
opening and committing a writer for each document you add. If you’re adding
batches of documents at a time, you can just use a regular writer.

(This class may also be useful for batches of update_document calls. In
a normal writer, update_document calls cannot update documents you’ve
added in that writer. With BufferedWriter, this will work.)

To use this class, create it from your index and keep it open, sharing
it between threads.

>>> from whoosh.writing import BufferedWriter
>>> writer = BufferedWriter(myindex, period=120, limit=20)
>>> # Then you can use the writer to add and update documents
>>> writer.add_document(...)
>>> writer.add_document(...)
>>> writer.add_document(...)
>>> # Before the writer goes out of scope, call close() on it
>>> writer.close()

Note

This object stores documents in memory and may keep an underlying
writer open, so you must explicitly call the
close() method on this object before it goes out
of scope to release the write lock and make sure any uncommitted
changes are saved.

You can read/search the combination of the on-disk index and the
buffered documents in memory by calling BufferedWriter.reader() or
BufferedWriter.searcher(). This allows quasi-real-time search, where
documents are available for searching as soon as they are buffered in
memory, before they are committed to disk.

Tip

By using a searcher from the shared writer, multiple threads can
search the buffered documents. Of course, other processes will only
see the documents that have been written to disk. If you want indexed
documents to become available to other processes as soon as possible,
you have to use a traditional writer instead of a BufferedWriter.

You can control how often the BufferedWriter flushes the in-memory
index to disk using the period and limit arguments. period is
the maximum number of seconds between commits. limit is the maximum
number of additions to buffer between commits.

You don’t need to call commit() on the BufferedWriter manually.
Doing so will just flush the buffered documents to disk early. You can
continue to make changes after calling commit(), and you can call
commit() multiple times.

	Parameters:	
	index – the whoosh.index.Index to write to.

	period – the maximum amount of time (in seconds) between commits.
Set this to 0 or None to not use a timer. Do not set this
any lower than a few seconds.

	limit – the maximum number of documents to buffer before
committing.

	writerargs – dictionary specifying keyword arguments to be passed
to the index’s writer() method when creating a writer.

	
class whoosh.writing.AsyncWriter(index, delay=0.25, writerargs=None)

	Convenience wrapper for a writer object that might fail due to locking
(i.e. the filedb writer). This object will attempt once to obtain the
underlying writer, and if it’s successful, will simply pass method calls on
to it.

If this object can’t obtain a writer immediately, it will buffer
delete, add, and update method calls in memory until you call commit().
At that point, this object will start running in a separate thread, trying
to obtain the writer over and over, and once it obtains it, “replay” all
the buffered method calls on it.

In a typical scenario where you’re adding a single or a few documents to
the index as the result of a Web transaction, this lets you just create the
writer, add, and commit, without having to worry about index locks,
retries, etc.

For example, to get an aynchronous writer, instead of this:

>>> writer = myindex.writer()

Do this:

>>> from whoosh.writing import AsyncWriter
>>> writer = AsyncWriter(myindex)

	Parameters:	
	index – the whoosh.index.Index to write to.

	delay – the delay (in seconds) between attempts to instantiate
the actual writer.

	writerargs – an optional dictionary specifying keyword arguments
to to be passed to the index’s writer() method.

Exceptions

	
exception whoosh.writing.IndexingError

	

Technical notes

	How to implement a new backend
	Index

	IndexWriter

	IndexReader

	Matcher

	filedb notes
	Files created

How to implement a new backend

Index

	Subclass whoosh.index.Index.

	Indexes must implement the following methods.
	whoosh.index.Index.is_empty()

	whoosh.index.Index.doc_count()

	whoosh.index.Index.reader()

	whoosh.index.Index.writer()

	Indexes that require/support locking must implement the following methods.
	whoosh.index.Index.lock()

	whoosh.index.Index.unlock()

	Indexes that support deletion must implement the following methods.
	whoosh.index.Index.delete_document()

	whoosh.index.Index.doc_count_all() – if the backend has delayed
deletion.

	Indexes that require/support versioning/transactions may implement the following methods.
	whoosh.index.Index.latest_generation()

	whoosh.index.Index.up_to_date()

	whoosh.index.Index.last_modified()

	Index may implement the following methods (the base class’s versions are no-ops).
	whoosh.index.Index.optimize()

	whoosh.index.Index.close()

IndexWriter

	Subclass whoosh.writing.IndexWriter.

	IndexWriters must implement the following methods.
	whoosh.writing.IndexWriter.add_document()

	whoosh.writing.IndexWriter.add_reader()

	Backends that support deletion must implement the following methods.
	whoosh.writing.IndexWriter.delete_document()

	IndexWriters that work as transactions must implement the following methods.
	whoosh.reading.IndexWriter.commit() – Save the additions/deletions done with
this IndexWriter to the main index, and release any resources used by the IndexWriter.

	whoosh.reading.IndexWriter.cancel() – Throw away any additions/deletions done
with this IndexWriter, and release any resources used by the IndexWriter.

IndexReader

	Subclass whoosh.reading.IndexReader.

	IndexReaders must implement the following methods.
	whoosh.reading.IndexReader.__contains__()

	whoosh.reading.IndexReader.__iter__()

	whoosh.reading.IndexReader.iter_from()

	whoosh.reading.IndexReader.stored_fields()

	whoosh.reading.IndexReader.doc_count_all()

	whoosh.reading.IndexReader.doc_count()

	whoosh.reading.IndexReader.doc_field_length()

	whoosh.reading.IndexReader.field_length()

	whoosh.reading.IndexReader.max_field_length()

	whoosh.reading.IndexReader.postings()

	whoosh.reading.IndexReader.has_vector()

	whoosh.reading.IndexReader.vector()

	whoosh.reading.IndexReader.doc_frequency()

	whoosh.reading.IndexReader.frequency()

	Backends that support deleting documents should implement the following
methods.
	whoosh.reading.IndexReader.has_deletions()

	whoosh.reading.IndexReader.is_deleted()

	Backends that support versioning should implement the following methods.
	whoosh.reading.IndexReader.generation()

	If the IndexReader object does not keep the schema in the self.schema
attribute, it needs to override the following methods.
	whoosh.reading.IndexReader.field()

	whoosh.reading.IndexReader.field_names()

	whoosh.reading.IndexReader.scorable_names()

	whoosh.reading.IndexReader.vector_names()

	IndexReaders may implement the following methods.
	whoosh.reading.DocReader.close() – closes any open resources associated with the
reader.

Matcher

The whoosh.reading.IndexReader.postings() method returns a
whoosh.matching.Matcher object. You will probably need to implement
a custom Matcher class for reading from your posting lists.

	Subclass whoosh.matching.Matcher.

	Implement the following methods at minimum.
	whoosh.matching.Matcher.is_active()

	whoosh.matching.Matcher.copy()

	whoosh.matching.Matcher.id()

	whoosh.matching.Matcher.next()

	whoosh.matching.Matcher.value()

	whoosh.matching.Matcher.value_as()

	whoosh.matching.Matcher.score()

	Depending on the implementation, you may implement the following methods
more efficiently.
	whoosh.matching.Matcher.skip_to()

	whoosh.matching.Matcher.weight()

	If the implementation supports quality, you should implement the following
methods.
	whoosh.matching.Matcher.supports_quality()

	whoosh.matching.Matcher.quality()

	whoosh.matching.Matcher.block_quality()

	whoosh.matching.Matcher.skip_to_quality()

filedb notes

TBD.

Files created

	<revision_number>.toc

	The “master” file containing information about the index and its segments.

The index directory will contain a set of files for each segment. A segment is like a mini-index – when you add documents to the index, whoosh creates a new segment and then searches the old segment(s) and the new segment to avoid having to do a big merge every time you add a document. When you get enough small segments whoosh will merge them into larger segments or a single segment.

	<segment_number>.dci

	Contains per-document information (e.g. field lengths). This will grow linearly with the number of documents.

	<segment_number>.dcz

	Contains the stored fields for each document.

	<segment_number>.tiz

	Contains per-term information. The size of file will vary based on the number of unique terms.

	<segment_number>.pst

	Contains per-term postings. The size of this file depends on the size of the collection and the formats used for each field (e.g. storing term positions takes more space than storing frequency only).

	<segment_number>.fvz

	contains term vectors (forward indexes) for each document. This file is only created if at least one field in the schema stores term vectors. The size will vary based on the number of documents, field length, the formats used for each vector (e.g. storing term positions takes more space than storing frequency only), etc.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 whoosh	

 	
 	
 whoosh.analysis	

 	
 	
 whoosh.codec.base	

 	
 	
 whoosh.collectors	

 	
 	
 whoosh.columns	

 	
 	
 whoosh.fields	

 	
 	
 whoosh.filedb.filestore	

 	
 	
 whoosh.filedb.filetables	

 	
 	
 whoosh.filedb.structfile	

 	
 	
 whoosh.formats	

 	
 	
 whoosh.highlight	

 	
 	
 whoosh.idsets	

 	
 	
 whoosh.index	

 	
 	
 whoosh.lang.morph_en	

 	
 	
 whoosh.lang.porter	

 	
 	
 whoosh.lang.wordnet	

 	
 	
 whoosh.matching	

 	
 	
 whoosh.qparser	

 	
 	
 whoosh.query	

 	
 	
 whoosh.reading	

 	
 	
 whoosh.scoring	

 	
 	
 whoosh.searching	

 	
 	
 whoosh.sorting	

 	
 	
 whoosh.spelling	

 	
 	
 whoosh.support.charset	

 	
 	
 whoosh.support.levenshtein	

 	
 	
 whoosh.util	

 	
 	
 whoosh.writing	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	accept() (whoosh.query.Query method)

 	add() (whoosh.fields.Schema method)

 	(whoosh.filedb.filetables.HashWriter method)

 	(whoosh.sorting.FacetMap method)

 	add_all() (whoosh.filedb.filetables.HashWriter method)

 	add_document() (whoosh.writing.IndexWriter method)

 	add_facet() (whoosh.sorting.Facets method)

 	add_facets() (whoosh.sorting.Facets method)

 	add_field() (whoosh.index.Index method)

 	(whoosh.sorting.Facets method)

 	(whoosh.writing.IndexWriter method)

 	add_plugin() (whoosh.qparser.QueryParser method)

 	add_plugins() (whoosh.qparser.QueryParser method)

 	add_query() (whoosh.sorting.Facets method)

 	AdditiveBiMatcher (class in whoosh.matching)

 	after() (whoosh.idsets.DocIdSet method)

 	all() (whoosh.filedb.filetables.HashReader method)

 	all_doc_ids() (whoosh.codec.base.PerDocumentReader method)

 	(whoosh.reading.IndexReader method)

 	
 	all_ids() (whoosh.collectors.Collector method)

 	(whoosh.matching.Matcher method)

 	all_items() (whoosh.matching.Matcher method)

 	all_stored_fields() (whoosh.reading.IndexReader method)

 	all_terms() (whoosh.query.Query method)

 	(whoosh.reading.IndexReader method)

 	all_tokens() (whoosh.query.Query method)

 	Analysis

 	And (class in whoosh.query)

 	AndGroup (class in whoosh.qparser)

 	AndMaybe (class in whoosh.query)

 	AndMaybeGroup (class in whoosh.qparser)

 	AndMaybeMatcher (class in whoosh.matching)

 	AndNot (class in whoosh.query)

 	AndNotGroup (class in whoosh.qparser)

 	AndNotMatcher (class in whoosh.matching)

 	apply() (whoosh.query.Query method)

 	as_dict() (whoosh.sorting.FacetMap method)

 	AsyncWriter (class in whoosh.writing)

B

 	
 	BaseBitSet (class in whoosh.idsets)

 	BaseScorer (class in whoosh.scoring)

 	BasicFragmentScorer (class in whoosh.highlight)

 	before() (whoosh.idsets.DocIdSet method)

 	Best (class in whoosh.sorting)

 	BiMatcher (class in whoosh.matching)

 	BinaryGroup (class in whoosh.qparser)

 	BitColumn (class in whoosh.columns)

 	BitSet (class in whoosh.idsets)

 	
 	BiWordFilter (class in whoosh.analysis)

 	block_quality() (whoosh.matching.Matcher method)

 	(whoosh.scoring.BaseScorer method)

 	BM25F (class in whoosh.scoring)

 	BOOLEAN (class in whoosh.fields)

 	boolean_context() (whoosh.searching.Searcher method)

 	BoostPlugin (class in whoosh.qparser)

 	BufferedWriter (class in whoosh.writing)

 	BufferFile (class in whoosh.filedb.structfile)

C

 	
 	cancel() (whoosh.writing.IndexWriter method)

 	Categorizer (class in whoosh.sorting)

 	categorizer() (whoosh.sorting.FacetType method)

 	CharacterBoosts (class in whoosh.formats)

 	Characters (class in whoosh.formats)

 	charset_table_to_dict() (in module whoosh.support.charset)

 	CharsetFilter (class in whoosh.analysis)

 	CharsetTokenizer (class in whoosh.analysis)

 	ChecksumFile (class in whoosh.filedb.structfile)

 	children() (whoosh.matching.Matcher method)

 	(whoosh.query.Query method)

 	ClampedNumericColumn (class in whoosh.columns)

 	clean() (whoosh.fields.FieldType method)

 	close() (whoosh.filedb.filestore.Storage method)

 	(whoosh.filedb.structfile.StructFile method)

 	(whoosh.index.Index method)

 	(whoosh.reading.IndexReader method)

 	Codec (class in whoosh.codec.base)

 	codec() (whoosh.reading.IndexReader method)

 	CollapseCollector (class in whoosh.collectors)

 	collect() (whoosh.collectors.Collector method)

 	collect_matches() (whoosh.collectors.Collector method)

 	Collector (class in whoosh.collectors)

 	collector() (whoosh.searching.Searcher method)

 	Column (class in whoosh.columns)

 	column_reader() (whoosh.reading.IndexReader method)

 	ColumnReader (class in whoosh.columns)

 	ColumnWriter (class in whoosh.columns)

 	CommaSeparatedTokenizer() (in module whoosh.analysis)

 	
 	commit() (whoosh.writing.IndexWriter method)

 	CompoundQuery (class in whoosh.query)

 	CompoundWordFilter (class in whoosh.analysis)

 	CompressedBytesColumn (class in whoosh.columns)

 	computes_count() (whoosh.collectors.Collector method)

 	ConstantScoreMatcher (class in whoosh.matching)

 	ConstantScoreQuery (class in whoosh.query)

 	context() (whoosh.searching.Searcher method)

 	ContextFragmenter (class in whoosh.highlight)

 	copy() (whoosh.fields.Schema method)

 	(whoosh.matching.Matcher method)

 	(whoosh.query.Query method)

 	(whoosh.searching.Results method)

 	copy_storage() (in module whoosh.filedb.filestore)

 	copy_to_ram() (in module whoosh.filedb.filestore)

 	CopyFieldPlugin (class in whoosh.qparser)

 	Corpus

 	correct_query() (whoosh.searching.Searcher method)

 	(whoosh.spelling.QueryCorrector method)

 	Correction (class in whoosh.spelling)

 	Corrector (class in whoosh.spelling)

 	corrector() (whoosh.reading.IndexReader method)

 	Count (class in whoosh.sorting)

 	count() (whoosh.collectors.Collector method)

 	create() (whoosh.filedb.filestore.Storage method)

 	create_file() (whoosh.codec.base.Segment method)

 	(whoosh.filedb.filestore.Storage method)

 	create_in() (in module whoosh.index)

 	create_index() (whoosh.filedb.filestore.Storage method)

D

 	
 	DateRange (class in whoosh.query)

 	DateRangeFacet (class in whoosh.sorting)

 	DATETIME (class in whoosh.fields)

 	decode_as() (whoosh.formats.Format method)

 	decoder() (whoosh.formats.Format method)

 	default_charset (in module whoosh.support.charset)

 	default_set() (whoosh.qparser.QueryParser method)

 	default_value() (whoosh.columns.Column method)

 	delete_by_query() (whoosh.writing.IndexWriter method)

 	delete_by_term() (whoosh.writing.IndexWriter method)

 	delete_document() (whoosh.codec.base.Segment method)

 	(whoosh.writing.IndexWriter method)

 	delete_file() (whoosh.filedb.filestore.Storage method)

 	deleted_count() (whoosh.codec.base.Segment method)

 	deletion_docs() (whoosh.query.Query method)

 	DelimitedAttributeFilter (class in whoosh.analysis)

 	depth() (whoosh.matching.Matcher method)

 	destroy() (whoosh.filedb.filestore.Storage method)

 	DisjunctionMax (class in whoosh.query)

 	DisjunctionMaxMatcher (class in whoosh.matching)

 	DisMaxGroup (class in whoosh.qparser)

 	DisMaxParser() (in module whoosh.qparser)

 	distance() (in module whoosh.support.levenshtein)

 	
 	doc_count() (whoosh.codec.base.Segment method)

 	(whoosh.index.Index method)

 	(whoosh.reading.IndexReader method)

 	(whoosh.searching.Searcher method)

 	doc_count_all() (whoosh.codec.base.Segment method)

 	(whoosh.index.Index method)

 	(whoosh.reading.IndexReader method)

 	(whoosh.searching.Searcher method)

 	doc_field_length() (whoosh.reading.IndexReader method)

 	doc_frequency() (whoosh.reading.IndexReader method)

 	(whoosh.reading.TermInfo method)

 	DocIdSet (class in whoosh.idsets)

 	docnum() (whoosh.searching.Results method)

 	(whoosh.searching.ResultsPage method)

 	docs() (whoosh.query.Query method)

 	(whoosh.searching.Results method)

 	docs_for_query() (whoosh.searching.Searcher method)

 	document() (whoosh.searching.Searcher method)

 	document_number() (whoosh.searching.Searcher method)

 	document_numbers() (whoosh.searching.Searcher method)

 	Documents

 	documents() (whoosh.searching.Searcher method)

 	DoubleMetaphoneFilter (class in whoosh.analysis)

E

 	
 	EmptyIndexError

 	end_group() (whoosh.writing.IndexWriter method)

 	ErrorNode (class in whoosh.qparser)

 	estimate_min_size() (whoosh.query.Query method)

 	estimate_size() (whoosh.query.Query method)

 	estimated_length() (whoosh.searching.Results method)

 	estimated_min_length() (whoosh.searching.Results method)

 	Every (class in whoosh.query)

 	
 	EveryPlugin (class in whoosh.qparser)

 	Existence (class in whoosh.formats)

 	existing_terms() (whoosh.query.Query method)

 	exists() (in module whoosh.index)

 	exists_in() (in module whoosh.index)

 	expand_prefix() (whoosh.reading.IndexReader method)

 	ExpandingTerm (class in whoosh.query)

 	extend() (whoosh.searching.Results method)

F

 	
 	facet_names() (whoosh.searching.Results method)

 	FacetCollector (class in whoosh.collectors)

 	FacetMap (class in whoosh.sorting)

 	Facets (class in whoosh.sorting)

 	FacetType (class in whoosh.sorting)

 	FancyAnalyzer() (in module whoosh.analysis)

 	fib() (in module whoosh.util)

 	field() (whoosh.query.Query method)

 	field_length() (whoosh.index.Index method)

 	(whoosh.reading.IndexReader method)

 	field_terms() (whoosh.reading.IndexReader method)

 	FieldAliasPlugin (class in whoosh.qparser)

 	FieldConfigurationError

 	FieldFacet (class in whoosh.sorting)

 	FieldnameNode (class in whoosh.qparser)

 	Fields

 	fields() (whoosh.searching.Hit method)

 	(whoosh.searching.Results method)

 	FieldsPlugin (class in whoosh.qparser)

 	FieldType (class in whoosh.fields)

 	FieldWriter (class in whoosh.codec.base)

 	file_exists() (whoosh.filedb.filestore.Storage method)

 	file_length() (whoosh.filedb.filestore.Storage method)

 	file_modified() (whoosh.filedb.filestore.Storage method)

 	FileIndex (class in whoosh.index)

 	FileStorage (class in whoosh.filedb.filestore)

 	filter() (whoosh.searching.Results method)

 	
 	FilterCollector (class in whoosh.collectors)

 	filterize() (whoosh.qparser.QueryParser method)

 	FilterMatcher (class in whoosh.matching)

 	filters() (whoosh.qparser.Plugin method)

 	(whoosh.qparser.QueryParser method)

 	final() (whoosh.scoring.WeightingModel method)

 	finish() (whoosh.collectors.Collector method)

 	first() (whoosh.idsets.DocIdSet method)

 	first_id() (whoosh.reading.IndexReader method)

 	FixedBytesColumn (class in whoosh.columns)

 	flush() (whoosh.filedb.structfile.StructFile method)

 	Format (class in whoosh.formats)

 	Forward index

 	Fragment (class in whoosh.highlight)

 	fragment_matches() (whoosh.highlight.Fragmenter method)

 	fragment_tokens() (whoosh.highlight.Fragmenter method)

 	Fragmenter (class in whoosh.highlight)

 	FragmentScorer (class in whoosh.highlight)

 	Frequency (class in whoosh.formats)

 	(class in whoosh.scoring)

 	frequency() (whoosh.reading.IndexReader method)

 	from_file() (whoosh.lang.wordnet.Thesaurus class method)

 	from_filename() (whoosh.lang.wordnet.Thesaurus class method)

 	from_storage() (whoosh.lang.wordnet.Thesaurus class method)

 	FunctionFacet (class in whoosh.sorting)

 	FunctionWeighting (class in whoosh.scoring)

 	FuzzyTerm (class in whoosh.query)

G

 	
 	generation() (whoosh.reading.IndexReader method)

 	GenshiFormatter (class in whoosh.highlight)

 	get_parent() (whoosh.searching.Searcher method)

 	group() (whoosh.writing.IndexWriter method)

 	
 	GroupNode (class in whoosh.qparser)

 	GroupPlugin (class in whoosh.qparser)

 	groups() (whoosh.searching.Results method)

 	GtLtPlugin (class in whoosh.qparser)

H

 	
 	has_deletions() (whoosh.codec.base.Segment method)

 	(whoosh.reading.IndexReader method)

 	has_exact_length() (whoosh.searching.Results method)

 	has_matched_terms() (whoosh.searching.Results method)

 	has_terms() (whoosh.query.Query method)

 	has_vector() (whoosh.reading.IndexReader method)

 	
 	HashReader (class in whoosh.filedb.filetables)

 	HashWriter (class in whoosh.filedb.filetables)

 	highlight() (in module whoosh.highlight)

 	Highlighter (class in whoosh.highlight)

 	highlights() (whoosh.searching.Hit method)

 	Hit (class in whoosh.searching)

 	HtmlFormatter (class in whoosh.highlight)

I

 	
 	ID (class in whoosh.fields)

 	id() (whoosh.matching.Matcher method)

 	IDAnalyzer() (in module whoosh.analysis)

 	idf() (whoosh.scoring.WeightingModel method)

 	(whoosh.searching.Searcher method)

 	IDLIST (class in whoosh.fields)

 	IDTokenizer (class in whoosh.analysis)

 	Index (class in whoosh.index)

 	index() (whoosh.fields.FieldType method)

 	index_exists() (whoosh.filedb.filestore.Storage method)

 	indexed_field_names() (whoosh.reading.IndexReader method)

 	IndexError

 	Indexing

 	IndexingError

 	IndexReader (class in whoosh.reading)

 	IndexVersionError

 	IndexWriter (class in whoosh.writing)

 	InfixOperator (class in whoosh.qparser)

 	IntersectionMatcher (class in whoosh.matching)

 	IntraWordFilter (class in whoosh.analysis)

 	
 	InverseMatcher (class in whoosh.matching)

 	invert_update() (whoosh.idsets.DocIdSet method)

 	is_active() (whoosh.matching.Matcher method)

 	is_deleted() (whoosh.codec.base.Segment method)

 	(whoosh.reading.IndexReader method)

 	is_empty() (whoosh.index.Index method)

 	(whoosh.searching.Results method)

 	is_last_page() (whoosh.searching.ResultsPage method)

 	is_leaf() (whoosh.query.Query method)

 	is_range() (whoosh.query.Query method)

 	is_ws() (whoosh.qparser.SyntaxNode method)

 	items() (whoosh.fields.Schema method)

 	(whoosh.searching.Results method)

 	(whoosh.sorting.Facets method)

 	items_as() (whoosh.matching.Matcher method)

 	iter_all_terms() (whoosh.query.Query method)

 	iter_docs() (whoosh.reading.IndexReader method)

 	iter_field() (whoosh.reading.IndexReader method)

 	iter_from() (whoosh.reading.IndexReader method)

 	iter_postings() (whoosh.reading.IndexReader method)

 	iter_prefix() (whoosh.reading.IndexReader method)

K

 	
 	key_for() (whoosh.sorting.Categorizer method)

 	key_terms() (whoosh.searching.Results method)

 	(whoosh.searching.Searcher method)

 	key_terms_from_text() (whoosh.searching.Searcher method)

 	
 	key_to_name() (whoosh.sorting.Categorizer method)

 	keys_for() (whoosh.sorting.Categorizer method)

 	KEYWORD (class in whoosh.fields)

 	KeywordAnalyzer() (in module whoosh.analysis)

L

 	
 	LanguageAnalyzer() (in module whoosh.analysis)

 	last() (whoosh.idsets.DocIdSet method)

 	last_modified() (whoosh.index.Index method)

 	latest_generation() (whoosh.index.Index method)

 	leaf_readers() (whoosh.reading.IndexReader method)

 	leaves() (whoosh.query.Query method)

 	
 	lexicon() (whoosh.reading.IndexReader method)

 	list() (whoosh.filedb.filestore.Storage method)

 	ListMatcher (class in whoosh.matching)

 	lock() (whoosh.filedb.filestore.Storage method)

 	LockError

 	LoggingFilter (class in whoosh.analysis)

 	LowercaseFilter (class in whoosh.analysis)

M

 	
 	make_binary_tree() (in module whoosh.util)

 	make_index() (in module whoosh.lang.wordnet)

 	make_weighted_tree() (in module whoosh.util)

 	MarkerNode (class in whoosh.qparser)

 	matched_terms() (whoosh.searching.Hit method)

 	(whoosh.searching.Results method)

 	Matcher (class in whoosh.matching)

 	matcher() (whoosh.query.Query method)

 	matches() (whoosh.collectors.Collector method)

 	matching_terms() (whoosh.matching.Matcher method)

 	max_field_length() (whoosh.index.Index method)

 	(whoosh.reading.IndexReader method)

 	max_id() (whoosh.reading.TermInfo method)

 	max_length() (whoosh.reading.TermInfo method)

 	max_quality() (whoosh.matching.Matcher method)

 	(whoosh.scoring.BaseScorer method)

 	max_weight() (whoosh.reading.TermInfo method)

 	merge() (whoosh.query.Span class method)

 	
 	min_field_length() (whoosh.reading.IndexReader method)

 	min_id() (whoosh.reading.TermInfo method)

 	min_length() (whoosh.reading.TermInfo method)

 	more_like() (whoosh.searching.Searcher method)

 	more_like_this() (whoosh.searching.Hit method)

 	most_distinctive_terms() (whoosh.reading.IndexReader method)

 	most_frequent_terms() (whoosh.reading.IndexReader method)

 	MultiCorrector (class in whoosh.spelling)

 	MultiFacet (class in whoosh.sorting)

 	MultifieldParser() (in module whoosh.qparser)

 	MultifieldPlugin (class in whoosh.qparser)

 	MultiFilter (class in whoosh.analysis)

 	MultiIdSet (class in whoosh.idsets)

 	MultiMatcher (class in whoosh.matching)

 	MultiReader (class in whoosh.reading)

 	MultiTerm (class in whoosh.query)

 	multitoken_query() (whoosh.qparser.QueryParser method)

 	MultiWeighting (class in whoosh.scoring)

 	must_retokenize() (whoosh.highlight.Fragmenter method)

N

 	
 	names() (whoosh.fields.Schema method)

 	(whoosh.sorting.Facets method)

 	NestedChildren (class in whoosh.query)

 	NestedParent (class in whoosh.query)

 	next() (whoosh.matching.Matcher method)

 	NGRAM (class in whoosh.fields)

 	NgramAnalyzer() (in module whoosh.analysis)

 	NgramFilter (class in whoosh.analysis)

 	NgramTokenizer (class in whoosh.analysis)

 	NgramWordAnalyzer() (in module whoosh.analysis)

 	
 	NGRAMWORDS (class in whoosh.fields)

 	NoQualityAvailable

 	normalize() (whoosh.query.Query method)

 	Not (class in whoosh.query)

 	NoTermsException

 	NotGroup (class in whoosh.qparser)

 	NullMatcher (in module whoosh.matching)

 	NullQuery (in module whoosh.query)

 	NUMERIC (class in whoosh.fields)

 	NumericColumn (class in whoosh.columns)

 	NumericRange (class in whoosh.query)

O

 	
 	OnDiskBitSet (class in whoosh.idsets)

 	open() (whoosh.filedb.filetables.HashReader class method)

 	open_dir() (in module whoosh.index)

 	open_file() (whoosh.codec.base.Segment method)

 	(whoosh.filedb.filestore.Storage method)

 	open_index() (whoosh.filedb.filestore.Storage method)

 	Operator (class in whoosh.qparser)

 	OperatorsPlugin (class in whoosh.qparser)

 	
 	optimize() (whoosh.filedb.filestore.Storage method)

 	(whoosh.index.Index method)

 	Or (class in whoosh.query)

 	OrderedHashReader (class in whoosh.filedb.filetables)

 	OrderedHashWriter (class in whoosh.filedb.filetables)

 	OrderedList (class in whoosh.sorting)

 	OrGroup (class in whoosh.qparser)

 	Otherwise (class in whoosh.query)

 	OutOfDateError

P

 	
 	parse() (whoosh.qparser.QueryParser method)

 	parse_file() (in module whoosh.lang.wordnet)

 	parse_query() (whoosh.fields.FieldType method)

 	parse_range() (whoosh.fields.FieldType method)

 	PassFilter (class in whoosh.analysis)

 	PathTokenizer (class in whoosh.analysis)

 	PerDocumentReader (class in whoosh.codec.base)

 	PerDocumentWriter (class in whoosh.codec.base)

 	Phrase (class in whoosh.query)

 	PhrasePlugin (class in whoosh.qparser)

 	PickleColumn (class in whoosh.columns)

 	PinpointFragmenter (class in whoosh.highlight)

 	Plugin (class in whoosh.qparser)

 	
 	PlusMinusPlugin (class in whoosh.qparser)

 	PositionBoosts (class in whoosh.formats)

 	Positions (class in whoosh.formats)

 	PostfixOperator (class in whoosh.qparser)

 	Postings

 	postings() (whoosh.reading.IndexReader method)

 	(whoosh.searching.Searcher method)

 	PostingsWriter (class in whoosh.codec.base)

 	Prefix (class in whoosh.query)

 	PrefixOperator (class in whoosh.qparser)

 	PrefixPlugin (class in whoosh.qparser)

 	prepare() (whoosh.collectors.Collector method)

 	process() (whoosh.qparser.QueryParser method)

 	process_text() (whoosh.fields.FieldType method)

Q

 	
 	Query (class in whoosh.query)

 	query() (whoosh.qparser.SyntaxNode method)

 	QueryCorrector (class in whoosh.spelling)

 	
 	QueryError

 	QueryFacet (class in whoosh.sorting)

 	QueryParser (class in whoosh.qparser)

R

 	
 	r() (whoosh.qparser.SyntaxNode method)

 	RamStorage (class in whoosh.filedb.filestore)

 	RangeFacet (class in whoosh.sorting)

 	RangeNode (class in whoosh.qparser)

 	RangePlugin (class in whoosh.qparser)

 	ranges_for_key() (whoosh.filedb.filetables.HashReader method)

 	read_pickle() (whoosh.filedb.structfile.StructFile method)

 	read_string() (whoosh.filedb.structfile.StructFile method)

 	read_svarint() (whoosh.filedb.structfile.StructFile method)

 	read_tagint() (whoosh.filedb.structfile.StructFile method)

 	read_varint() (whoosh.filedb.structfile.StructFile method)

 	reader() (whoosh.columns.Column method)

 	(whoosh.index.Index method)

 	(whoosh.searching.Searcher method)

 	(whoosh.writing.IndexWriter method)

 	ReaderCorrector (class in whoosh.spelling)

 	ReadOnlyError

 	ReadTooFar

 	RefBytesColumn (class in whoosh.columns)

 	refresh() (whoosh.index.Index method)

 	(whoosh.searching.Searcher method)

 	Regex (class in whoosh.query)

 	RegexAnalyzer() (in module whoosh.analysis)

 	
 	RegexPlugin (class in whoosh.qparser)

 	RegexTokenizer (class in whoosh.analysis)

 	relative() (in module whoosh.support.levenshtein)

 	remove() (whoosh.collectors.Collector method)

 	remove_field() (whoosh.index.Index method)

 	(whoosh.writing.IndexWriter method)

 	remove_plugin() (whoosh.qparser.QueryParser method)

 	remove_plugin_class() (whoosh.qparser.QueryParser method)

 	rename_file() (whoosh.filedb.filestore.Storage method)

 	replace() (whoosh.matching.Matcher method)

 	(whoosh.query.Query method)

 	replace_plugin() (whoosh.qparser.QueryParser method)

 	Require (class in whoosh.query)

 	RequireGroup (class in whoosh.qparser)

 	RequireMatcher (class in whoosh.matching)

 	requires() (whoosh.query.Query method)

 	reset() (whoosh.matching.Matcher method)

 	Results (class in whoosh.searching)

 	results() (whoosh.collectors.Collector method)

 	ResultsPage (class in whoosh.searching)

 	Reverse index

 	ReverseTextFilter (class in whoosh.analysis)

 	ReverseWeighting (class in whoosh.scoring)

S

 	
 	Schema

 	(class in whoosh.fields)

 	SchemaClass (class in whoosh.fields)

 	scorable_names() (whoosh.fields.Schema method)

 	score() (whoosh.matching.Matcher method)

 	(whoosh.scoring.BaseScorer method)

 	(whoosh.searching.Results method)

 	(whoosh.searching.ResultsPage method)

 	scored_length() (whoosh.searching.Results method)

 	ScoredCollector (class in whoosh.collectors)

 	ScoreFacet (class in whoosh.sorting)

 	scorer() (whoosh.scoring.WeightingModel method)

 	search() (whoosh.searching.Searcher method)

 	search_page() (whoosh.searching.Searcher method)

 	search_with_collector() (whoosh.searching.Searcher method)

 	Searcher (class in whoosh.searching)

 	searcher() (whoosh.index.Index method)

 	Segment (class in whoosh.codec.base)

 	segment() (whoosh.reading.IndexReader method)

 	self_parsing() (whoosh.fields.FieldType method)

 	SentenceFragmenter (class in whoosh.highlight)

 	separate_spelling() (whoosh.fields.FieldType method)

 	set_boost() (whoosh.qparser.SyntaxNode method)

 	set_fieldname() (whoosh.qparser.SyntaxNode method)

 	set_range() (whoosh.qparser.SyntaxNode method)

 	set_searcher() (whoosh.sorting.Categorizer method)

 	set_subsearcher() (whoosh.collectors.Collector method)

 	ShingleFilter (class in whoosh.analysis)

 	SimpleAnalyzer() (in module whoosh.analysis)

 	SimpleParser() (in module whoosh.qparser)

 	SimpleQueryCorrector (class in whoosh.spelling)

 	simplify() (whoosh.query.Query method)

 	SingleQuotePlugin (class in whoosh.qparser)

 	skip_to() (whoosh.matching.Matcher method)

 	skip_to_quality() (whoosh.matching.Matcher method)

 	sort_key() (whoosh.collectors.Collector method)

 	sortable_terms() (whoosh.fields.FieldType method)

 	SortedIntSet (class in whoosh.idsets)

 	SortingCollector (class in whoosh.collectors)

 	SpaceSeparatedTokenizer() (in module whoosh.analysis)

 	Span (class in whoosh.query)

 	
 	SpanBefore (class in whoosh.query)

 	SpanCondition (class in whoosh.query)

 	SpanContains (class in whoosh.query)

 	SpanFirst (class in whoosh.query)

 	SpanNear (class in whoosh.query)

 	SpanNear2 (class in whoosh.query)

 	SpanNot (class in whoosh.query)

 	SpanOr (class in whoosh.query)

 	SpanQuery (class in whoosh.query)

 	spans() (whoosh.matching.Matcher method)

 	spellable_words() (whoosh.fields.FieldType method)

 	spelling_fieldname() (whoosh.fields.FieldType method)

 	StandardAnalyzer() (in module whoosh.analysis)

 	start_group() (whoosh.writing.IndexWriter method)

 	stem() (in module whoosh.lang.porter)

 	StemFilter (class in whoosh.analysis)

 	StemmingAnalyzer() (in module whoosh.analysis)

 	StopFilter (class in whoosh.analysis)

 	Storage (class in whoosh.filedb.filestore)

 	storage() (whoosh.reading.IndexReader method)

 	STORED (class in whoosh.fields)

 	stored_fields() (whoosh.reading.IndexReader method)

 	stored_names() (whoosh.fields.Schema method)

 	StoredFieldFacet (class in whoosh.sorting)

 	stores_lists() (whoosh.columns.Column method)

 	StripFilter (class in whoosh.analysis)

 	StructColumn (class in whoosh.columns)

 	StructFile (class in whoosh.filedb.structfile)

 	subfields() (whoosh.fields.FieldType method)

 	SubstitutionFilter (class in whoosh.analysis)

 	suggest() (whoosh.searching.Searcher method)

 	(whoosh.spelling.Corrector method)

 	supports() (whoosh.fields.FieldType method)

 	(whoosh.formats.Format method)

 	(whoosh.matching.Matcher method)

 	supports_block_quality() (whoosh.matching.Matcher method)

 	(whoosh.scoring.BaseScorer method)

 	synchronized() (in module whoosh.util)

 	synonyms() (in module whoosh.lang.wordnet)

 	(whoosh.lang.wordnet.Thesaurus method)

 	SyntaxNode (class in whoosh.qparser)

T

 	
 	tag() (whoosh.qparser.QueryParser method)

 	taggers() (whoosh.qparser.Plugin method)

 	(whoosh.qparser.QueryParser method)

 	TeeFilter (class in whoosh.analysis)

 	temp_storage() (whoosh.filedb.filestore.Storage method)

 	Term (class in whoosh.query)

 	Term vector

 	term() (whoosh.matching.Matcher method)

 	term_info() (whoosh.reading.IndexReader method)

 	term_matchers() (whoosh.matching.Matcher method)

 	term_query() (whoosh.qparser.QueryParser method)

 	TermInfo (class in whoosh.reading)

 	TermNotFound

 	TermRange (class in whoosh.query)

 	terms() (whoosh.query.Query method)

 	terms_from() (whoosh.reading.IndexReader method)

 	
 	terms_within() (whoosh.reading.IndexReader method)

 	TermsCollector (class in whoosh.collectors)

 	TermsReader (class in whoosh.codec.base)

 	TEXT (class in whoosh.fields)

 	TextNode (class in whoosh.qparser)

 	TF_IDF (class in whoosh.scoring)

 	Thesaurus (class in whoosh.lang.wordnet)

 	TimeLimit

 	TimeLimitCollector (class in whoosh.collectors)

 	to_bytes() (whoosh.fields.FieldType method)

 	to_column_value() (whoosh.fields.FieldType method)

 	to_storage() (whoosh.lang.wordnet.Thesaurus method)

 	Token (class in whoosh.analysis)

 	tokenize() (whoosh.fields.FieldType method)

 	tokens() (whoosh.query.Query method)

 	TopCollector (class in whoosh.collectors)

U

 	
 	unclosed() (in module whoosh.util)

 	UnionMatcher (class in whoosh.matching)

 	UnknownFieldError

 	UnlimitedCollector (class in whoosh.collectors)

 	UnorderedList (class in whoosh.sorting)

 	unstopped() (in module whoosh.analysis)

 	
 	up_to_date() (whoosh.index.Index method)

 	(whoosh.searching.Searcher method)

 	update_document() (whoosh.writing.IndexWriter method)

 	upgrade() (whoosh.searching.Results method)

 	upgrade_and_extend() (whoosh.searching.Results method)

 	UppercaseFormatter (class in whoosh.highlight)

V

 	
 	value() (whoosh.matching.Matcher method)

 	value_as() (whoosh.matching.Matcher method)

 	VarBytesColumn (class in whoosh.columns)

 	Variations (class in whoosh.query)

 	
 	variations() (in module whoosh.lang.morph_en)

 	vector() (whoosh.reading.IndexReader method)

 	vector_as() (whoosh.reading.IndexReader method)

 	version() (in module whoosh.index)

 	version_in() (in module whoosh.index)

W

 	
 	weight() (whoosh.matching.Matcher method)

 	(whoosh.reading.TermInfo method)

 	WeightingModel (class in whoosh.scoring)

 	WeightLengthScorer (class in whoosh.scoring)

 	WeightScorer (class in whoosh.scoring)

 	WholeFragmenter (class in whoosh.highlight)

 	whoosh.analysis (module)

 	whoosh.codec.base (module)

 	whoosh.collectors (module)

 	whoosh.columns (module)

 	whoosh.fields (module)

 	whoosh.filedb.filestore (module)

 	whoosh.filedb.filetables (module)

 	whoosh.filedb.structfile (module)

 	whoosh.formats (module)

 	whoosh.highlight (module)

 	whoosh.idsets (module)

 	whoosh.index (module)

 	whoosh.lang.morph_en (module)

 	whoosh.lang.porter (module)

 	whoosh.lang.wordnet (module)

 	whoosh.matching (module)

 	whoosh.qparser (module)

 	whoosh.query (module)

 	whoosh.reading (module)

 	
 	whoosh.scoring (module)

 	whoosh.searching (module)

 	whoosh.sorting (module)

 	whoosh.spelling (module)

 	whoosh.support.charset (module)

 	whoosh.support.levenshtein (module)

 	whoosh.util (module)

 	whoosh.writing (module)

 	Wildcard (class in whoosh.query)

 	WildcardPlugin (class in whoosh.qparser)

 	with_boost() (whoosh.query.Query method)

 	word_values() (whoosh.formats.Format method)

 	WordNode (class in whoosh.qparser)

 	WrappingCollector (class in whoosh.collectors)

 	WrappingMatcher (class in whoosh.matching)

 	WrappingQuery (class in whoosh.query)

 	write_byte() (whoosh.filedb.structfile.StructFile method)

 	write_pickle() (whoosh.filedb.structfile.StructFile method)

 	write_string() (whoosh.filedb.structfile.StructFile method)

 	write_svarint() (whoosh.filedb.structfile.StructFile method)

 	write_tagint() (whoosh.filedb.structfile.StructFile method)

 	write_varint() (whoosh.filedb.structfile.StructFile method)

 	writer() (whoosh.columns.Column method)

 	(whoosh.index.Index method)

 	written() (whoosh.codec.base.PostingsWriter method)

 nav.xhtml

 Table of Contents

 		Whoosh 2.7.4 documentation

 		Release notes

 		Whoosh 2.x release notes

 		Whoosh 2.7

 		Whoosh 2.5

 		Whoosh 2.4

 		Whoosh 2.3.2

 		Whoosh 2.3.1

 		Whoosh 2.3

 		Whoosh 2.2

 		Whoosh 2.1

 		Whoosh 2.0

 		Whoosh 1.x release notes

 		Whoosh 1.8.3

 		Whoosh 1.8.2

 		Whoosh 1.8.1

 		Whoosh 1.8

 		Whoosh 1.7.7

 		Whoosh 1.7

 		Whoosh 1.6

 		Whoosh 1.5

 		Whoosh 1.3

 		Whoosh 1.2

 		Whoosh 1.0

 		User API changes

 		Misc

 		Whoosh 0.3 release notes

 		Quick start

 		A quick introduction

 		The Index and Schema objects

 		The IndexWriter object

 		The Searcher object

 		Introduction to Whoosh

 		About Whoosh

 		What is Whoosh?

 		What can Whoosh do for you?

 		Getting help with Whoosh

 		Glossary

 		Designing a schema

 		About schemas and fields

 		Built-in field types

 		Creating a Schema

 		Modifying the schema after indexing

 		Dynamic fields

 		Advanced schema setup

 		Field boosts

 		Field types

 		Formats

 		Vectors

 		How to index documents

 		Creating an Index object

 		Clearing the index

 		Indexing documents

 		Indexing and storing different values for the same field

 		Finishing adding documents

 		Merging segments

 		Deleting documents

 		Updating documents

 		Incremental indexing

 		Clearing the index

 		How to search

 		The Searcher object

 		Results object

 		Scoring and sorting

 		Scoring

 		Sorting

 		Highlighting snippets and More Like This

 		Filtering results

 		Which terms from my query matched?

 		Collapsing results

 		Time limited searches

 		Convenience methods

 		Combining Results objects

 		Parsing user queries

 		Overview

 		Using the default parser

 		Common customizations

 		Searching for any terms instead of all terms by default

 		Letting the user search multiple fields by default

 		Simplifying the query language

 		Changing the AND, OR, ANDNOT, ANDMAYBE, and NOT syntax

 		Adding less-than, greater-than, etc.

 		Adding fuzzy term queries

 		Allowing complex phrase queries

 		Advanced customization

 		QueryParser arguments

 		Configuring plugins

 		Creating custom operators

 		The default query language

 		Overview

 		Individual terms and phrases

 		Boolean operators

 		Fields

 		Inexact terms

 		Ranges

 		Boosting query elements

 		Making a term from literal text

 		Indexing and parsing dates/times

 		Indexing dates

 		Parsing date queries

 		About time zones and basetime

 		Date parser notes

 		Setting the base datetime

 		Registering an error callback

 		Using free parsing

 		Parsable formats

 		Limitations

 		Query objects

 		About analyzers

 		Overview

 		Using analyzers

 		Advanced Analysis

 		Token objects

 		Token setting attributes

 		Token information attributes

 		Performing different analysis for indexing and query parsing

 		Stop words

 		Renumbering term positions

 		Removing or leaving stop words

 		Implementation notes

 		Stemming, variations, and accent folding

 		The problem

 		Stemming

 		Variations

 		Lemmatization

 		Character folding

 		Indexing and searching N-grams

 		Overview

 		Sorting and faceting

 		Overview

 		Sorting

 		Making fields sortable

 		About column types

 		Using a COLUMN field for custom sort keys

 		Making existing fields sortable

 		Sorting search results

 		Examples

 		Accessing column values

 		Grouping

 		The groupedby keyword argument

 		Examples

 		Getting the faceted groups

 		Facet types

 		FieldFacet

 		QueryFacet

 		RangeFacet

 		DateRangeFacet

 		ScoreFacet

 		FunctionFacet

 		StoredFieldFacet

 		MultiFacet

 		Missing values

 		Using overlapping groups

 		Using a custom sort order

 		Expert: writing your own facet

 		How to create highlighted search result excerpts

 		Overview

 		Requirements

 		How to

 		The character limit

 		Customizing the highlights

 		Number of fragments

 		Fragment size

 		Fragmenter

 		Scorer

 		Order

 		Formatter

 		Highlighter object

 		Speeding up highlighting

 		PinpointFragmenter

 		PinpointFragmenter limitations

 		Using the low-level API

 		Usage

 		Query expansion and Key word extraction

 		Overview

 		Usage

 		Expansion models

 		“Did you mean... ?” Correcting errors in user queries

 		Overview

 		Pulling suggestions from an indexed field

 		Pulling suggestions from a word list

 		Merging two or more correctors

 		Correcting user queries

 		Field caches

 		Customizing cache behaviour

 		Creating a custom caching policy

 		Tips for speeding up batch indexing

 		Overview

 		StemmingAnalyzer cache

 		The limitmb parameter

 		The procs parameter

 		The multisegment parameter

 		Concurrency, locking, and versioning

 		Concurrency

 		Locking

 		Lock files

 		Versioning

 		Indexing and searching document hierarchies

 		Overview

 		Using nested document indexing

 		Indexing

 		NestedParent query

 		NestedChildren query

 		Deleting and updating hierarchical documents

 		Using query-time joins

 		Whoosh recipes

 		General

 		Get the stored fields for a document from the document number

 		Analysis

 		Eliminate words shorter/longer than N

 		Allow optional case-sensitive searches

 		Searching

 		Find every document

 		iTunes-style search-as-you-type

 		Shortcuts

 		Look up documents by a field value

 		Sorting and scoring

 		Score results based on the position of the matched term

 		Results

 		How many hits were there?

 		Which terms matched in each hit?

 		Global information

 		How many documents are in the index?

 		What fields are in the index?

 		Is term X in the index?

 		How many times does term X occur in the index?

 		Is term X in document Y?

 		Whoosh API

 		analysis module

 		Analyzers

 		Tokenizers

 		Filters

 		Token classes and functions

 		codec.base module

 		Classes

 		collectors module

 		Base classes

 		Basic collectors

 		Wrappers

 		columns module

 		Base classes

 		Basic columns

 		Technical columns

 		Experimental columns

 		fields module

 		Schema class

 		FieldType base class

 		Pre-made field types

 		Exceptions

 		filedb.filestore module

 		Base class

 		Implementation classes

 		Helper functions

 		Exceptions

 		filedb.filetables module

 		Hash file

 		Ordered Hash file

 		filedb.structfile module

 		Classes

 		formats module

 		Base class

 		Formats

 		highlight module

 		Manual highlighting

 		Fragmenters

 		Scorers

 		Formatters

 		Utility classes

 		support.bitvector module

 		Base classes

 		Implementation classes

 		index module

 		Functions

 		Base class

 		Implementation

 		Exceptions

 		lang.morph_en module

 		lang.porter module

 		lang.wordnet module

 		Thesaurus

 		Low-level functions

 		matching module

 		Matchers

 		Exceptions

 		qparser module

 		Parser object

 		Plug-ins

 		Syntax node objects

 		query module

 		Base classes

 		Query classes

 		Binary queries

 		Span queries

 		Special queries

 		Exceptions

 		reading module

 		Classes

 		Exceptions

 		scoring module

 		Base classes

 		Scoring algorithm classes

 		Scoring utility classes

 		searching module

 		Searching classes

 		Results classes

 		Exceptions

 		sorting module

 		Base types

 		Facet types

 		Facets object

 		FacetType objects

 		spelling module

 		Corrector objects

 		QueryCorrector objects

 		support.charset module

 		support.levenshtein module

 		util module

 		writing module

 		Writer

 		Utility writers

 		Exceptions

 		Technical notes

 		How to implement a new backend

 		Index

 		IndexWriter

 		IndexReader

 		Matcher

 		filedb notes

 		Files created

_static/up.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

